Suppr超能文献

基于胸部X光图像自动识别新型冠状病毒肺炎所致肺部混浊——聚焦于肺部

Automatic Identification of Lung Opacities Due to COVID-19 from Chest X-ray Images-Focussing Attention on the Lungs.

作者信息

Arias-Londoño Julián D, Moure-Prado Álvaro, Godino-Llorente Juan I

机构信息

ETSI Telecomunicación, Universidad Politécnica de Madrid, Avda. Ciudad Universitaria, 30, 28040 Madrid, Spain.

出版信息

Diagnostics (Basel). 2023 Apr 10;13(8):1381. doi: 10.3390/diagnostics13081381.

Abstract

Due to the primary affection of the respiratory system, COVID-19 leaves traces that are visible in plain chest X-ray images. This is why this imaging technique is typically used in the clinic for an initial evaluation of the patient's degree of affection. However, individually studying every patient's radiograph is time-consuming and requires highly skilled personnel. This is why automatic decision support systems capable of identifying those lesions due to COVID-19 are of practical interest, not only for alleviating the workload in the clinic environment but also for potentially detecting non-evident lung lesions. This article proposes an alternative approach to identify lung lesions associated with COVID-19 from plain chest X-ray images using deep learning techniques. The novelty of the method is based on an alternative pre-processing of the images that focuses attention on a certain region of interest by cropping the original image to the area of the lungs. The process simplifies training by removing irrelevant information, improving model precision, and making the decision more understandable. Using the FISABIO-RSNA COVID-19 Detection open data set, results report that the opacities due to COVID-19 can be detected with a Mean Average Precision with an IoU > 0.5 (mAP@50) of 0.59 following a semi-supervised training procedure and an ensemble of two architectures: RetinaNet and Cascade R-CNN. The results also suggest that cropping to the rectangular area occupied by the lungs improves the detection of existing lesions. A main methodological conclusion is also presented, suggesting the need to resize the available bounding boxes used to delineate the opacities. This process removes inaccuracies during the labelling procedure, leading to more accurate results. This procedure can be easily performed automatically after the cropping stage.

摘要

由于呼吸系统是新冠病毒的主要侵袭部位,新冠病毒肺炎在普通胸部X光图像上会留下可见痕迹。这就是为什么这种成像技术通常在临床上用于初步评估患者的感染程度。然而,逐个研究每个患者的X光片既耗时又需要高技能人员。这就是为什么能够识别新冠病毒肺炎所致病变的自动决策支持系统具有实际意义,不仅可以减轻临床环境中的工作量,还可能检测出不明显的肺部病变。本文提出了一种使用深度学习技术从普通胸部X光图像中识别与新冠病毒肺炎相关的肺部病变的替代方法。该方法的新颖之处在于对图像进行了一种替代预处理,通过将原始图像裁剪到肺部区域来聚焦于某个感兴趣区域。这个过程通过去除无关信息简化了训练,提高了模型精度,并使决策更易于理解。使用FISABIO-RSNA新冠病毒肺炎检测开放数据集,结果报告称,在半监督训练过程以及RetinaNet和Cascade R-CNN两种架构的集成之后,对于新冠病毒肺炎所致的不透明度,使用交并比(IoU)> 0.5的平均精度均值(mAP@50)为0.59来进行检测。结果还表明,裁剪到肺部占据的矩形区域可改善对现有病变的检测。还提出了一个主要的方法学结论,即需要调整用于描绘不透明度的可用边界框的大小。这个过程消除了标注过程中的不准确之处,从而得到更准确的结果。这个过程在裁剪阶段之后可以很容易地自动执行。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9610/10136982/e7de6c560d59/diagnostics-13-01381-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验