Suppr超能文献

使用二甲吖啶基掺杂剂的倒置钙钛矿太阳能电池。

Inverted perovskite solar cells using dimethylacridine-based dopants.

机构信息

Department of Materials Science and Engineering, Institute of Innovative Materials, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation, Southern University of Science and Technology, Shenzhen, China.

Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, China.

出版信息

Nature. 2023 Aug;620(7974):545-551. doi: 10.1038/s41586-023-06207-0. Epub 2023 May 24.

Abstract

Doping of perovskite semiconductors and passivation of their grain boundaries remain challenging but essential for advancing high-efficiency perovskite solar cells. Particularly, it is crucial to build perovskite/indium tin oxide (ITO) Schottky contact based inverted devices without predepositing a layer of hole-transport material. Here we report a dimethylacridine-based molecular doping process used to construct a well-matched p-perovskite/ITO contact, along with all-round passivation of grain boundaries, achieving a certified power conversion efficiency (PCE) of 25.39%. The molecules are shown to be extruded from the precursor solution to the grain boundaries and the bottom of the film surface in the chlorobenzene-quenched crystallization process, which we call a molecule-extrusion process. The core coordination complex between the deprotonated phosphonic acid group of the molecule and lead polyiodide of perovskite is responsible for both mechanical absorption and electronic charge transfer, and leads to p-type doping of the perovskite film. We created an efficient device with a PCE of 25.86% (reverse scan) and that maintained 96.6% of initial PCE after 1,000 h of light soaking.

摘要

钙钛矿半导体的掺杂和晶界钝化仍然是具有挑战性的,但对于提高高效钙钛矿太阳能电池至关重要。特别是,在不预先沉积空穴传输材料的情况下,构建基于钙钛矿/铟锡氧化物(ITO)肖特基接触的倒置器件至关重要。在这里,我们报告了一种基于二甲吖啶的分子掺杂工艺,用于构建匹配良好的 p 型钙钛矿/ITO 接触,并全面钝化晶界,实现了经过认证的功率转换效率(PCE)为 25.39%。在氯苯淬火结晶过程中,这些分子被挤出到晶界和薄膜表面的底部,我们称之为分子挤出过程。分子中去质子化的膦酸基团与钙钛矿多碘化物之间的核心配位络合物负责机械吸收和电子电荷转移,并导致钙钛矿薄膜的 p 型掺杂。我们制造了一种具有 25.86%(反向扫描)PCE 的高效器件,并且在 1000 小时的光浸泡后保持了初始 PCE 的 96.6%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验