Department of Sports and Recreation, Technological and Higher Education Institute of Hong Kong (THEi), Chai Wan, Hong Kong, China.
The Asian Academy for Sports and Fitness Professionals, Chai Wan, Hongkong, China.
Int J Environ Res Public Health. 2023 May 19;20(10):5881. doi: 10.3390/ijerph20105881.
To solve the research-practice gap and take one step forward toward using big data with real-world evidence, the present study aims to adopt a novel method using machine learning to pool findings from meta-analyses and predict the change of countermovement jump. The data were collected through a total of 124 individual studies included in 16 recent meta-analyses. The performance of four selected machine learning algorithms including support vector machine, random forest (RF) ensemble, light gradient boosted machine, and the neural network using multi-layer perceptron was compared. The RF yielded the highest accuracy (mean absolute error: 0.071 cm; R: 0.985). Based on the feature importance calculated by the RF regressor, the baseline CMJ ("Pre-CMJ") was the most impactful predictor, followed by age ("Age"), the total number of training sessions received ("Total number of training_session"), controlled or non-controlled conditions ("Control (no training)"), whether the training program included squat, lunge, deadlift, or hip thrust exercises ("Squat_Lunge_Deadlift_Hipthrust_True", "Squat_Lunge_Deadlift_Hipthrust_False"), or "Plyometric (mixed fast/slow SSC)", and whether the athlete was from an Asian pacific region including Australia ("Race_Asian or Australian"). By using multiple simulated virtual cases, the successful predictions of the CMJ improvement are shown, whereas the perceived benefits and limitations of using machine learning in a meta-analysis are discussed.
为了解决研究与实践之间的差距,进一步利用真实世界证据中的大数据,本研究旨在采用一种新的机器学习方法,综合荟萃分析的研究结果并预测反跳式纵跳的变化。该研究通过纳入 16 项近期荟萃分析的共 124 项个体研究来收集数据。比较了 4 种选定的机器学习算法(支持向量机、随机森林(RF)集成、轻梯度提升机和使用多层感知器的神经网络)的性能。RF 的准确率最高(平均绝对误差:0.071cm;R:0.985)。基于 RF 回归器计算的特征重要性,基线反跳式纵跳(“Pre-CMJ”)是最具影响力的预测因子,其次是年龄(“Age”)、接受的总训练次数(“Total number of training_session”)、控制或非控制条件(“Control(无训练)”)、训练计划是否包含深蹲、弓步蹲、硬拉或髋关节推举练习(“Squat_Lunge_Deadlift_Hipthrust_True”、“Squat_Lunge_Deadlift_Hipthrust_False”),或“增强式训练(混合快速/慢速 SSC)”,以及运动员是否来自包括澳大利亚在内的亚太地区(“Race_Asian or Australian”)。通过使用多个模拟虚拟案例,展示了对反跳式纵跳改善的成功预测,同时讨论了在荟萃分析中使用机器学习的益处和局限性。