IBM Research Africa, Nairobi, Kenya.
AMIA Annu Symp Proc. 2022 Feb 21;2021:217-226. eCollection 2021.
The use of epidemiological models for decision-making has been prominent during the COVID-19 pandemic. Our work presents the application of nonparametric Bayesian techniques for inferring epidemiological model parameters based on available data sets published during the pandemic, towards enabling predictions under uncertainty during emerging pandemics. We present a methodology and framework that allows epidemiological model drivers to be integrated as input into the model calibration process. We demonstrate our methodology using the stringency index and mobility data for COVID-19 on an SEIRD compartmental model for selected US states. Our results directly compare the use of Bayesian nonparametrics for model predictions based on best parameter estimates with results of inference of parameter values across the US states. The proposed methodology provides a framework for What-If analysis and sequential decision-making methods for disease intervention planning and is demonstrated for COVID-19, while also applicable to other infectious disease models.
在 COVID-19 大流行期间,使用流行病学模型进行决策一直备受关注。我们的工作展示了如何应用非参数贝叶斯技术,根据大流行期间发布的现有数据集,推断流行病学模型参数,以便在新出现的大流行期间进行不确定条件下的预测。我们提出了一种方法和框架,允许将流行病学模型驱动因素作为输入集成到模型校准过程中。我们使用 SEIRD 隔室模型,针对选定的美国州,使用严格指数和 COVID-19 移动性数据,演示了我们的方法。我们的结果直接比较了基于最佳参数估计的贝叶斯非参数模型预测的使用情况,以及跨美国各州推断参数值的结果。所提出的方法为疾病干预规划提供了一种情景分析和序贯决策方法的框架,并针对 COVID-19 进行了演示,同时也适用于其他传染病模型。