Teijema Jelle Jasper, Hofstee Laura, Brouwer Marlies, de Bruin Jonathan, Ferdinands Gerbrich, de Boer Jan, Vizan Pablo, van den Brand Sofie, Bockting Claudi, van de Schoot Rens, Bagheri Ayoub
Department of Methodology and Statistics, Faculty of Social and Behavioral Sciences, Utrecht University, Utrecht, Netherlands.
Amsterdam UMC, Department of Psychiatry and Centre for Urban Mental Health, University of Amsterdam, Amsterdam, Netherlands.
Front Res Metr Anal. 2023 May 16;8:1178181. doi: 10.3389/frma.2023.1178181. eCollection 2023.
This study examines the performance of active learning-aided systematic reviews using a deep learning-based model compared to traditional machine learning approaches, and explores the potential benefits of model-switching strategies.
Comprising four parts, the study: 1) analyzes the performance and stability of active learning-aided systematic review; 2) implements a convolutional neural network classifier; 3) compares classifier and feature extractor performance; and 4) investigates the impact of model-switching strategies on review performance.
Lighter models perform well in early simulation stages, while other models show increased performance in later stages. Model-switching strategies generally improve performance compared to using the default classification model alone.
The study's findings support the use of model-switching strategies in active learning-based systematic review workflows. It is advised to begin the review with a light model, such as Naïve Bayes or logistic regression, and switch to a heavier classification model based on a heuristic rule when needed.
本研究将基于深度学习的模型与传统机器学习方法进行比较,考察主动学习辅助的系统评价的性能,并探索模型切换策略的潜在益处。
该研究包括四个部分:1)分析主动学习辅助的系统评价的性能和稳定性;2)实施一个卷积神经网络分类器;3)比较分类器和特征提取器的性能;4)研究模型切换策略对评价性能的影响。
较轻的模型在早期模拟阶段表现良好,而其他模型在后期阶段性能有所提高。与单独使用默认分类模型相比,模型切换策略通常能提高性能。
该研究结果支持在基于主动学习的系统评价工作流程中使用模型切换策略。建议以轻量级模型(如朴素贝叶斯或逻辑回归)开始评价,并在需要时根据启发式规则切换到更复杂的分类模型。