Suppr超能文献

评估不同的16S rRNA基因高变区和参考数据库,以分析猪废水处理厂中工程微生物群落结构和功能类群。

Evaluation of different 16S rRNA gene hypervariable regions and reference databases for profiling engineered microbiota structure and functional guilds in a swine wastewater treatment plant.

作者信息

Lin Limin, Ju Feng

机构信息

Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, People's Republic of China.

Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, People's Republic of China.

出版信息

Interface Focus. 2023 Jun 9;13(4):20230012. doi: 10.1098/rsfs.2023.0012. eCollection 2023 Aug 6.

Abstract

High-throughput 16S rRNA gene amplicon sequencing technology is widely applied for environmental microbiota structure analysis to derive knowledge that informs microbiome-based surveillance and oriented bioengineering. However, it remains elusive how the selection of 16S rRNA gene hypervariable regions and reference databases affects microbiota diversity and structure profiling. This study systematically evaluated the fitness of different frequently used reference databases (i.e. SILVA 138 SSU, GTDB bact120_r207, Greengenes 13_5 and MiDAS 4.8) and primers of 16S rRNA gene in microbiota profiling of anaerobic digestion and activated sludge collected from a full-scale swine wastewater treatment plant (WWTP). The comparative results showed that MiDAS 4.8 achieved the highest levels of taxonomic diversity and species-level assignment rate. For whichever sample groups, microbiota richness captured by different primers decreased in the following order: V4 > V4-V5 > V3-V4 > V6-V8/V1-V3. Using primer-bias-free metagenomic data results as the judging standard, V4 region also best characterized microbiota structure and well represented typical functional guilds (e.g. methanogens, ammonium oxidizers and denitrifiers), while V6-V8 regions largely overestimated the archaeal methanogens (mainly ) by over 30 times. Therefore, MiDAS 4.8 database and V4 region are recommended for best simultaneous analysis of bacterial and archaeal community diversity and structure of the examined swine WWTP.

摘要

高通量16S rRNA基因扩增子测序技术被广泛应用于环境微生物群落结构分析,以获取有助于基于微生物组的监测和定向生物工程的知识。然而,16S rRNA基因高变区和参考数据库的选择如何影响微生物群落多样性和结构分析仍不清楚。本研究系统评估了不同常用参考数据库(即SILVA 138 SSU、GTDB bact120_r207、Greengenes 13_5和MiDAS 4.8)以及16S rRNA基因引物在从一座大型养猪废水处理厂(WWTP)收集的厌氧消化和活性污泥微生物群落分析中的适用性。比较结果表明,MiDAS 4.8实现了最高水平的分类多样性和物种水平分配率。对于任何样本组,不同引物捕获的微生物群落丰富度按以下顺序降低:V4>V4-V5>V3-V4>V6-V8/V1-V3。以无引物偏差的宏基因组数据结果作为判断标准,V4区域也最能表征微生物群落结构,并很好地代表了典型的功能类群(如产甲烷菌、铵氧化菌和反硝化菌),而V6-V8区域在很大程度上高估了古菌产甲烷菌(主要是)超过30倍。因此,推荐使用MiDAS 4.8数据库和V4区域,以最佳地同时分析所研究的养猪废水处理厂的细菌和古菌群落多样性及结构。

相似文献

2
GSR-DB: a manually curated and optimized taxonomical database for 16S rRNA amplicon analysis.
mSystems. 2024 Feb 20;9(2):e0095023. doi: 10.1128/msystems.00950-23. Epub 2024 Jan 8.
3
Primer, Pipelines, Parameters: Issues in 16S rRNA Gene Sequencing.
mSphere. 2021 Feb 24;6(1):e01202-20. doi: 10.1128/mSphere.01202-20.
4
Optimisation of 16S rRNA gut microbiota profiling of extremely low birth weight infants.
BMC Genomics. 2017 Nov 2;18(1):841. doi: 10.1186/s12864-017-4229-x.
6
Evaluation of different 16S rRNA gene V regions for exploring bacterial diversity in a eutrophic freshwater lake.
Sci Total Environ. 2018 Mar 15;618:1254-1267. doi: 10.1016/j.scitotenv.2017.09.228. Epub 2017 Oct 28.
7
Comparison of different hypervariable regions of 16S rRNA for taxonomic profiling of vaginal microbiota using next-generation sequencing.
Arch Microbiol. 2021 Apr;203(3):1159-1166. doi: 10.1007/s00203-020-02114-4. Epub 2020 Nov 22.
10

引用本文的文献

2
Comparison of fecal microbiota and metabolites in diarrheal piglets pre-and post-weaning.
Front Vet Sci. 2025 Jun 20;12:1613054. doi: 10.3389/fvets.2025.1613054. eCollection 2025.
3
Impacts of Tick Parasitism on the Rodent Gut Microbiome.
Microorganisms. 2025 Apr 12;13(4):888. doi: 10.3390/microorganisms13040888.

本文引用的文献

5
TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data.
Mol Plant. 2020 Aug 3;13(8):1194-1202. doi: 10.1016/j.molp.2020.06.009. Epub 2020 Jun 23.
7
Exploring the roles of zero-valent iron in two-stage food waste anaerobic digestion.
Waste Manag. 2020 Apr 15;107:91-100. doi: 10.1016/j.wasman.2020.04.004. Epub 2020 Apr 8.
8
GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database.
Bioinformatics. 2019 Nov 15;36(6):1925-7. doi: 10.1093/bioinformatics/btz848.
9
Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis.
Nat Commun. 2019 Nov 6;10(1):5029. doi: 10.1038/s41467-019-13036-1.
10
Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome.
Science. 2019 Nov 1;366(6465):606-612. doi: 10.1126/science.aaw9285.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验