Suppr超能文献

机器学习与分子辐射肿瘤标志物。

Machine Learning & Molecular Radiation Tumor Biomarkers.

机构信息

Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; Department of Human Oncology, University of Wisconsin, Madison, WI.

Department of Human Oncology, University of Wisconsin, Madison, WI.

出版信息

Semin Radiat Oncol. 2023 Jul;33(3):243-251. doi: 10.1016/j.semradonc.2023.03.002.

Abstract

Developing radiation tumor biomarkers that can guide personalized radiotherapy clinical decision making is a critical goal in the effort towards precision cancer medicine. High-throughput molecular assays paired with modern computational techniques have the potential to identify individual tumor-specific signatures and create tools that can help understand heterogenous patient outcomes in response to radiotherapy, allowing clinicians to fully benefit from the technological advances in molecular profiling and computational biology including machine learning. However, the increasingly complex nature of the data generated from high-throughput and "omics" assays require careful selection of analytical strategies. Furthermore, the power of modern machine learning techniques to detect subtle data patterns comes with special considerations to ensure that the results are generalizable. Herein, we review the computational framework of tumor biomarker development and describe commonly used machine learning approaches and how they are applied for radiation biomarker development using molecular data, as well as challenges and emerging research trends.

摘要

开发能够指导个性化放疗临床决策的放射肿瘤生物标志物是精准癌症医学努力的关键目标。高通量分子检测与现代计算技术相结合,具有识别个体肿瘤特异性特征并创建工具的潜力,可帮助了解放疗后异质患者的结果,使临床医生能够充分受益于分子谱分析和计算生物学的技术进步,包括机器学习。然而,高通量和“组学”检测产生的数据日益复杂,这需要仔细选择分析策略。此外,现代机器学习技术检测细微数据模式的能力需要特别考虑,以确保结果具有可推广性。本文综述了肿瘤生物标志物开发的计算框架,并描述了常用的机器学习方法以及如何将其应用于基于分子数据的放射生物标志物开发,同时还探讨了挑战和新兴的研究趋势。

相似文献

1
Machine Learning & Molecular Radiation Tumor Biomarkers.
Semin Radiat Oncol. 2023 Jul;33(3):243-251. doi: 10.1016/j.semradonc.2023.03.002.
2
Identifying Molecular Biomarkers for Diseases With Machine Learning Based on Integrative Omics.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2514-2525. doi: 10.1109/TCBB.2020.2986387. Epub 2021 Dec 8.
3
Are innovation and new technologies in precision medicine paving a new era in patients centric care?
J Transl Med. 2019 Apr 5;17(1):114. doi: 10.1186/s12967-019-1864-9.
4
Emerging Analytical Approaches for Personalized Medicine Using Machine Learning In Pediatric and Congenital Heart Disease.
Can J Cardiol. 2024 Oct;40(10):1880-1896. doi: 10.1016/j.cjca.2024.07.026. Epub 2024 Aug 7.
5
MicroRNAs: circulating biomarkers for the early detection of imperceptible cancers via biosensor and machine-learning advances.
Oncogene. 2024 Jul;43(28):2135-2142. doi: 10.1038/s41388-024-03076-3. Epub 2024 Jun 5.
7
The Need for Multi-Omics Biomarker Signatures in Precision Medicine.
Int J Mol Sci. 2019 Sep 26;20(19):4781. doi: 10.3390/ijms20194781.
8
9
Development and validation of genomic predictors of radiation sensitivity using preclinical data.
BMC Cancer. 2021 Aug 20;21(1):937. doi: 10.1186/s12885-021-08652-4.

引用本文的文献

1
Predicting head and neck cancer response to radiotherapy with a chemokine-based model.
Sci Rep. 2025 Aug 4;15(1):28450. doi: 10.1038/s41598-025-13346-z.
3
Monte Carlo methods to assess biological response to radiation in peripheral organs and in critical organs near the target.
Rep Pract Oncol Radiother. 2024 Dec 4;29(5):638-648. doi: 10.5603/rpor.103525. eCollection 2024.
4
Cross-species conserved miRNA as biomarker of radiation injury over a wide dose range using nonhuman primate model.
PLoS One. 2024 Nov 21;19(11):e0311379. doi: 10.1371/journal.pone.0311379. eCollection 2024.

本文引用的文献

2
Transfer learning for medical image classification: a literature review.
BMC Med Imaging. 2022 Apr 13;22(1):69. doi: 10.1186/s12880-022-00793-7.
3
Pan-cancer prediction of radiotherapy benefit using genomic-adjusted radiation dose (GARD): a cohort-based pooled analysis.
Lancet Oncol. 2021 Sep;22(9):1221-1229. doi: 10.1016/S1470-2045(21)00347-8. Epub 2021 Aug 4.
8
A six-gene-based signature for breast cancer radiotherapy sensitivity estimation.
Biosci Rep. 2020 Dec 23;40(12). doi: 10.1042/BSR20202376.
10
Tools for the analysis of high-dimensional single-cell RNA sequencing data.
Nat Rev Nephrol. 2020 Jul;16(7):408-421. doi: 10.1038/s41581-020-0262-0. Epub 2020 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验