Suppr超能文献

利用临床记录识别急性护理高风险肿瘤患者的自然语言处理方法

Natural Language Processing Methods to Identify Oncology Patients at High Risk for Acute Care with Clinical Notes.

作者信息

Fanconi Claudio, van Buchem Marieke, Hernandez-Boussard Tina

机构信息

Stanford University, Stanford, California, United States.

ETH Zürich, Zürich, Switzerland.

出版信息

AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:138-147. eCollection 2023.

Abstract

Clinical notes are an essential component of a health record. This paper evaluates how natural language processing (NLP) can be used to identify the risk of acute care use (ACU) in oncology patients, once chemotherapy starts. Risk prediction using structured health data (SHD) is now standard, but predictions using free-text formats are complex. This paper explores the use of free-text notes for the prediction of ACU in leu of SHD. Deep Learning models were compared to manually engineered language features. Results show that SHD models minimally outperform NLP models; an ℓ-penalised logistic regression with SHD achieved a C-statistic of 0.748 (95%-CI: 0.735, 0.762), while the same model with language features achieved 0.730 (95%-CI: 0.717, 0.745) and a transformer-based model achieved 0.702 (95%-CI: 0.688, 0.717). This paper shows how language models can be used in clinical applications and underlines how risk bias is different for diverse patient groups, even using only free-text data.

摘要

临床记录是健康档案的重要组成部分。本文评估了自然语言处理(NLP)如何用于识别肿瘤患者化疗开始后急性护理使用(ACU)的风险。使用结构化健康数据(SHD)进行风险预测现已成为标准做法,但使用自由文本格式进行预测则较为复杂。本文探讨了在没有SHD的情况下使用自由文本记录来预测ACU。将深度学习模型与人工设计的语言特征进行了比较。结果表明,SHD模型略优于NLP模型;使用SHD的ℓ-惩罚逻辑回归模型的C统计量为0.748(95%置信区间:0.735,0.762),而使用语言特征的相同模型的C统计量为0.730(95%置信区间:0.717,0.745),基于Transformer的模型的C统计量为0.702(95%置信区间:0.688,0.717)。本文展示了语言模型如何用于临床应用,并强调了即使仅使用自由文本数据,不同患者群体的风险偏差也有所不同。

相似文献

1
Natural Language Processing Methods to Identify Oncology Patients at High Risk for Acute Care with Clinical Notes.
AMIA Jt Summits Transl Sci Proc. 2023 Jun 16;2023:138-147. eCollection 2023.
4
Deep Learning Approaches for Predicting Glaucoma Progression Using Electronic Health Records and Natural Language Processing.
Ophthalmol Sci. 2022 Feb 12;2(2):100127. doi: 10.1016/j.xops.2022.100127. eCollection 2022 Jun.
7
Identification of Preanesthetic History Elements by a Natural Language Processing Engine.
Anesth Analg. 2022 Dec 1;135(6):1162-1171. doi: 10.1213/ANE.0000000000006152. Epub 2022 Jul 15.
9
Identifying Goals of Care Conversations in the Electronic Health Record Using Natural Language Processing and Machine Learning.
J Pain Symptom Manage. 2021 Jan;61(1):136-142.e2. doi: 10.1016/j.jpainsymman.2020.08.024. Epub 2020 Aug 25.

引用本文的文献

1
Ensemble learning to enhance accurate identification of patients with glaucoma using electronic health records.
JAMIA Open. 2025 Aug 10;8(4):ooaf080. doi: 10.1093/jamiaopen/ooaf080. eCollection 2025 Aug.
3
Opportunities for Artificial Intelligence in Oncology: From the Lens of Clinicians and Patients.
JCO Oncol Pract. 2025 Mar 13:OP2400797. doi: 10.1200/OP-24-00797.
4
Large language models in cancer: potentials, risks, and safeguards.
BJR Artif Intell. 2024 Dec 20;2(1):ubae019. doi: 10.1093/bjrai/ubae019. eCollection 2025 Jan.
5
Applying natural language processing to patient messages to identify depression concerns in cancer patients.
J Am Med Inform Assoc. 2024 Oct 1;31(10):2255-2262. doi: 10.1093/jamia/ocae188.
6
The Role of Large Language Models in Transforming Emergency Medicine: Scoping Review.
JMIR Med Inform. 2024 May 10;12:e53787. doi: 10.2196/53787.

本文引用的文献

2
Launching into clinical space with medspaCy: a new clinical text processing toolkit in Python.
AMIA Annu Symp Proc. 2022 Feb 21;2021:438-447. eCollection 2021.
5
Deep learning in clinical natural language processing: a methodical review.
J Am Med Inform Assoc. 2020 Mar 1;27(3):457-470. doi: 10.1093/jamia/ocz200.
6
Development and Validation of a Score to Predict Acute Care Use After Initiation of Systemic Therapy for Cancer.
JAMA Netw Open. 2019 Oct 2;2(10):e1912823. doi: 10.1001/jamanetworkopen.2019.12823.
7
A simple, step-by-step guide to interpreting decision curve analysis.
Diagn Progn Res. 2019 Oct 4;3:18. doi: 10.1186/s41512-019-0064-7. eCollection 2019.
9
A calibration hierarchy for risk models was defined: from utopia to empirical data.
J Clin Epidemiol. 2016 Jun;74:167-76. doi: 10.1016/j.jclinepi.2015.12.005. Epub 2016 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验