Suppr超能文献

深模糊:深度学习和模糊水流的协同集成,用于数字病理学中的细粒度核分割。

Deep-Fuzz: A synergistic integration of deep learning and fuzzy water flows for fine-grained nuclei segmentation in digital pathology.

机构信息

Deapartemnt of Computer Science and Engineering (AIML), Institute of Engineering and Management, Kolkata, West Bengal, India.

Deapartment of Computer Science and Engineering, Jadavpur University, Kolkata, West Bengal, India.

出版信息

PLoS One. 2023 Jun 23;18(6):e0286862. doi: 10.1371/journal.pone.0286862. eCollection 2023.

Abstract

Robust semantic segmentation of tumour micro-environment is one of the major open challenges in machine learning enabled computational pathology. Though deep learning based systems have made significant progress, their task agnostic data driven approach often lacks the contextual grounding necessary in biomedical applications. We present a novel fuzzy water flow scheme that takes the coarse segmentation output of a base deep learning framework to then provide a more fine-grained and instance level robust segmentation output. Our two stage synergistic segmentation method, Deep-Fuzz, works especially well for overlapping objects, and achieves state-of-the-art performance in four public cell nuclei segmentation datasets. We also show through visual examples how our final output is better aligned with pathological insights, and thus more clinically interpretable.

摘要

肿瘤微环境的鲁棒语义分割是机器学习赋能的计算病理学中的主要开放性挑战之一。尽管基于深度学习的系统已经取得了重大进展,但它们的任务不可知的数据驱动方法在生物医学应用中往往缺乏必要的上下文基础。我们提出了一种新颖的模糊水流方案,该方案利用基础深度学习框架的粗分割输出,然后提供更细粒度和实例级别的鲁棒分割输出。我们的两阶段协同分割方法 Deep-Fuzz 特别适用于重叠对象,并在四个公共细胞核分割数据集上实现了最先进的性能。我们还通过可视化示例展示了我们的最终输出如何更好地与病理见解保持一致,从而更具临床可解释性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a66/10289330/97ebb23edc22/pone.0286862.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验