Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
J Bacteriol. 2014 Feb;196(4):850-8. doi: 10.1128/JB.00843-13. Epub 2013 Dec 6.
The purple bacterium Rhodopseudomonas palustris TIE-1 expresses multiple small high-potential redox proteins during photoautotrophic growth, including two high-potential iron-sulfur proteins (HiPIPs) (PioC and Rpal_4085) and a cytochrome c2. We evaluated the role of these proteins in TIE-1 through genetic, physiological, and biochemical analyses. Deleting the gene encoding cytochrome c2 resulted in a loss of photosynthetic ability by TIE-1, indicating that this protein cannot be replaced by either HiPIP in cyclic electron flow. PioC was previously implicated in photoferrotrophy, an unusual form of photosynthesis in which reducing power is provided through ferrous iron oxidation. Using cyclic voltammetry (CV), electron paramagnetic resonance (EPR) spectroscopy, and flash-induced spectrometry, we show that PioC has a midpoint potential of 450 mV, contains all the typical features of a HiPIP, and can reduce the reaction centers of membrane suspensions in a light-dependent manner at a much lower rate than cytochrome c2. These data support the hypothesis that PioC linearly transfers electrons from iron, while cytochrome c2 is required for cyclic electron flow. Rpal_4085, despite having spectroscopic characteristics and a reduction potential similar to those of PioC, is unable to reduce the reaction center. Rpal_4085 is upregulated by the divalent metals Fe(II), Ni(II), and Co(II), suggesting that it might play a role in sensing or oxidizing metals in the periplasm. Taken together, our results suggest that these three small electron transfer proteins perform different functions in the cell.
沼泽红假单胞菌 TIE-1 在光自养生长过程中表达多种小的高潜力氧化还原蛋白,包括两种高潜力铁硫蛋白(HiPIPs)(PioC 和 Rpal_4085)和细胞色素 c2。我们通过遗传、生理和生化分析评估了这些蛋白质在 TIE-1 中的作用。删除编码细胞色素 c2 的基因导致 TIE-1失去光合作用能力,表明该蛋白不能在循环电子流中被任何一种 HiPIP 替代。PioC 先前被认为参与光亚铁营养作用,这是一种不寻常的光合作用形式,其中还原力通过二价铁氧化提供。使用循环伏安法(CV)、电子顺磁共振(EPR)光谱和闪光诱导光谱法,我们表明 PioC 的中点电位为 450 mV,包含 HiPIP 的所有典型特征,并且可以以比细胞色素 c2 低得多的速率依赖于光还原膜悬浮液中的反应中心。这些数据支持 PioC 从铁线性转移电子,而细胞色素 c2 是循环电子流所必需的假设。尽管 Rpal_4085 具有与 PioC 相似的光谱特征和还原电位,但它无法还原反应中心。Rpal_4085 被二价金属 Fe(II)、Ni(II)和 Co(II)上调,表明它可能在感知或氧化周质中的金属方面发挥作用。总之,我们的结果表明,这三种小的电子转移蛋白在细胞中执行不同的功能。