Suppr超能文献

半干旱雨养生产系统下长期保护性农业试验中的土壤细菌群落结构与功能

Soil bacterial community structure and functioning in a long-term conservation agriculture experiment under semi-arid rainfed production system.

作者信息

Pratibha G, Manjunath M, Raju B M K, Srinivas I, Rao K V, Shanker Arun K, Prasad J V N S, Rao M Srinivasa, Kundu Sumanta, Indoria A K, Kumar Upendra, Rao K Srinivasa, Anna Shivakumar, Rao Ch Srinivasa, Singh V K, Biswas A K, Chaudhari S K

机构信息

ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, Telangana, India.

ICAR-National Rice Research Institute, Cuttack, Odisha, India.

出版信息

Front Microbiol. 2023 Jun 15;14:1102682. doi: 10.3389/fmicb.2023.1102682. eCollection 2023.

Abstract

Soil microbial communities are important drivers of biogeochemical cycling of nutrients, organic matter decomposition, soil organic carbon, and Greenhouse gas emissions (GHGs: CO, NO, and CH) and are influenced by crop and soil management practices. The knowledge on the impact of conservation agriculture (CA) on soil bacterial diversity, nutrient availability, and GHG emissions in semi-arid regions under rainfed conditions is vital to develop sustainable agricultural practices, but such information has not been systemically documented. Hence, studies were conducted for 10 years in rainfed pigeonpea ( L.)-castor bean ( L.) cropping system under semi-arid conditions to assess the effects of tillage and crop residue levels on the soil bacterial diversity, enzyme activity (Dehydrogenase, urease, acid phosphatase, and alkaline phosphatase), GHG emissions, and soil available nutrients (Nitrogen, phosphorus, and potassium). Sequencing of soil DNA through Illumina HiSeq-based 16S rRNA amplicon sequencing technology has revealed that bacterial community responded to both tillage and residue levels. The relative abundance of Actinobacteria in terms of Operational Taxonomic Unit (OTUs) at phyla, class as well as genera level was higher in CA (NTR1: No Tillage + 10 cm anchored residue and NTR2 NT + 30 cm anchored residue) over CT (conventional tillage without crop residues). CA resulted in higher enzyme activities (dehydrogenase, urease, acid phosphatase, and alkaline phosphatase) and reduction in GHG emissions over CT. CA recorded 34% higher and 3% lower OC, as compared to CT, and CTR1, respectively. CA recorded 10, 34, and 26% higher available nitrogen, phosphorus, and potassium over CT and CTR1, respectively. NTR1 recorded 25 and 38% lower NO emissions as compared to CTR1 and CTR2, respectively. Whereas only NT recorded 12% higher NO emissions as compared to CT. Overall, the results of the study indicate that CA improves the relative abundance of soil bacterial communities, nutrient availability, and enzyme activities, and may help to contribute to the mitigation of climate change, and sustainability in rainfed areas.

摘要

土壤微生物群落是养分生物地球化学循环、有机物质分解、土壤有机碳以及温室气体排放(温室气体:一氧化碳、一氧化氮和甲烷)的重要驱动因素,并受作物和土壤管理措施的影响。了解保护性农业(CA)对雨养条件下半干旱地区土壤细菌多样性、养分有效性和温室气体排放的影响,对于制定可持续农业实践至关重要,但此类信息尚未得到系统记录。因此,在半干旱条件下的雨养木豆(L.)-蓖麻(L.)种植系统中进行了为期10年的研究,以评估耕作和作物残茬水平对土壤细菌多样性、酶活性(脱氢酶、脲酶、酸性磷酸酶和碱性磷酸酶)、温室气体排放以及土壤有效养分(氮、磷和钾)的影响。通过基于Illumina HiSeq的16S rRNA扩增子测序技术对土壤DNA进行测序,结果表明细菌群落对耕作和残茬水平均有响应。与传统耕作(CT,无作物残茬)相比,保护性农业(NTR1:免耕+10厘米固定残茬和NTR2:免耕+30厘米固定残茬)中放线菌在门、纲以及属水平上的操作分类单元(OTUs)相对丰度更高。与传统耕作相比,保护性农业导致酶活性(脱氢酶、脲酶、酸性磷酸酶和碱性磷酸酶)更高,温室气体排放减少。与传统耕作和CTR1相比,保护性农业的有机碳分别高出34%和低3%。与传统耕作和CTR1相比,保护性农业的有效氮、磷和钾分别高出10%、34%和26%。与CTR1和CTR2相比,NTR1的一氧化氮排放量分别降低了25%和38%。而与传统耕作相比,只有免耕的一氧化氮排放量高出12%。总体而言,研究结果表明,保护性农业提高了土壤细菌群落的相对丰度、养分有效性和酶活性,可能有助于缓解气候变化,并促进雨养地区的可持续性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4265/10307972/97f811320c53/fmicb-14-1102682-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验