Suppr超能文献

深度学习算法在医学影像分析中的可重复性:系统评价。

Reproducibility of Deep Learning Algorithms Developed for Medical Imaging Analysis: A Systematic Review.

机构信息

Artificial Intelligence Lab, Department of Radiology, Mayo Clinic, Rochester, MN, USA.

Orthopedic Surgery Artificial Intelligence Laboratory (OSAIL), Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.

出版信息

J Digit Imaging. 2023 Oct;36(5):2306-2312. doi: 10.1007/s10278-023-00870-5. Epub 2023 Jul 5.

Abstract

Since 2000, there have been more than 8000 publications on radiology artificial intelligence (AI). AI breakthroughs allow complex tasks to be automated and even performed beyond human capabilities. However, the lack of details on the methods and algorithm code undercuts its scientific value. Many science subfields have recently faced a reproducibility crisis, eroding trust in processes and results, and influencing the rise in retractions of scientific papers. For the same reasons, conducting research in deep learning (DL) also requires reproducibility. Although several valuable manuscript checklists for AI in medical imaging exist, they are not focused specifically on reproducibility. In this study, we conducted a systematic review of recently published papers in the field of DL to evaluate if the description of their methodology could allow the reproducibility of their findings. We focused on the Journal of Digital Imaging (JDI), a specialized journal that publishes papers on AI and medical imaging. We used the keyword "Deep Learning" and collected the articles published between January 2020 and January 2022. We screened all the articles and included the ones which reported the development of a DL tool in medical imaging. We extracted the reported details about the dataset, data handling steps, data splitting, model details, and performance metrics of each included article. We found 148 articles. Eighty were included after screening for articles that reported developing a DL model for medical image analysis. Five studies have made their code publicly available, and 35 studies have utilized publicly available datasets. We provided figures to show the ratio and absolute count of reported items from included studies. According to our cross-sectional study, in JDI publications on DL in medical imaging, authors infrequently report the key elements of their study to make it reproducible.

摘要

自 2000 年以来,已有超过 8000 篇关于放射学人工智能(AI)的出版物。AI 突破使得复杂任务能够自动化,甚至能够超越人类能力。然而,缺乏关于方法和算法代码的详细信息削弱了其科学价值。最近,许多科学子领域都面临着可重复性危机,破坏了对过程和结果的信任,并影响了科学论文的撤回率上升。出于同样的原因,在深度学习(DL)中进行研究也需要可重复性。尽管有几个有价值的 AI 医学成像手稿清单,但它们并没有专门针对可重复性。在本研究中,我们对该领域最近发表的 DL 论文进行了系统综述,以评估其方法描述是否能够重现其研究结果。我们专注于专门发表 AI 和医学成像论文的《数字成像杂志》(JDI)。我们使用关键字“深度学习”并收集了 2020 年 1 月至 2022 年 1 月期间发表的文章。我们筛选了所有文章,并纳入了报告开发医学成像中 DL 工具的文章。我们提取了报告的关于数据集、数据处理步骤、数据分割、模型详细信息和纳入文章的性能指标的详细信息。我们发现了 148 篇文章。经过筛选,有 80 篇文章报告了用于医学图像分析的 DL 模型开发。有 5 项研究已经公开了他们的代码,有 35 项研究利用了公开数据集。我们提供了图表来显示纳入研究报告项目的比例和绝对数量。根据我们的横断面研究,在 JDI 发表的关于医学成像的 DL 出版物中,作者很少报告使其可重现的研究的关键要素。

相似文献

4
Artificial intelligence for detecting keratoconus.人工智能在圆锥角膜检测中的应用。
Cochrane Database Syst Rev. 2023 Nov 15;11(11):CD014911. doi: 10.1002/14651858.CD014911.pub2.
10
Measures implemented in the school setting to contain the COVID-19 pandemic.学校为控制 COVID-19 疫情而采取的措施。
Cochrane Database Syst Rev. 2022 Jan 17;1(1):CD015029. doi: 10.1002/14651858.CD015029.

引用本文的文献

7
Checklist for Reproducibility of Deep Learning in Medical Imaging.医学影像深度学习可重复性检查表。
J Imaging Inform Med. 2024 Aug;37(4):1664-1673. doi: 10.1007/s10278-024-01065-2. Epub 2024 Mar 14.

本文引用的文献

5
An analysis of key indicators of reproducibility in radiology.放射学可重复性关键指标分析
Insights Imaging. 2020 May 11;11(1):65. doi: 10.1186/s13244-020-00870-x.
9
The reproducibility crisis in the age of digital medicine.数字医学时代的可重复性危机。
NPJ Digit Med. 2019 Jan 29;2:2. doi: 10.1038/s41746-019-0079-z. eCollection 2019.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验