Suppr超能文献

基于机器学习的 ADHD 儿童基于传感器的身体活动监测的攻击行为检测。

Machine Learning-Based Aggression Detection in Children with ADHD Using Sensor-Based Physical Activity Monitoring.

机构信息

Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.

Menninger Department of Psychiatry and Behavioral Sciences and Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA.

出版信息

Sensors (Basel). 2023 May 21;23(10):4949. doi: 10.3390/s23104949.

Abstract

Aggression in children is highly prevalent and can have devastating consequences, yet there is currently no objective method to track its frequency in daily life. This study aims to investigate the use of wearable-sensor-derived physical activity data and machine learning to objectively identify physical-aggressive incidents in children. Participants (n = 39) aged 7 to 16 years, with and without ADHD, wore a waist-worn activity monitor (ActiGraph, GT3X+) for up to one week, three times over 12 months, while demographic, anthropometric, and clinical data were collected. Machine learning techniques, specifically random forest, were used to analyze patterns that identify physical-aggressive incident with 1-min time resolution. A total of 119 aggression episodes, lasting 7.3 ± 13.1 min for a total of 872 1-min epochs including 132 physical aggression epochs, were collected. The model achieved high precision (80.2%), accuracy (82.0%), recall (85.0%), F1 score (82.4%), and area under the curve (89.3%) to distinguish physical aggression epochs. The sensor-derived feature of vector magnitude (faster triaxial acceleration) was the second contributing feature in the model, and significantly distinguished aggression and non-aggression epochs. If validated in larger samples, this model could provide a practical and efficient solution for remotely detecting and managing aggressive incidents in children.

摘要

儿童攻击行为普遍存在,可能产生破坏性后果,但目前尚无客观方法在日常生活中跟踪其发生频率。本研究旨在探讨使用可穿戴传感器衍生的身体活动数据和机器学习来客观识别儿童的身体攻击事件。参与者(n=39)年龄为 7 至 16 岁,包括患有和未患有 ADHD 的儿童,佩戴腰部佩戴的活动监测器(ActiGraph,GT3X+)长达一周,12 个月内进行三次,同时收集人口统计学、人体测量学和临床数据。使用机器学习技术(特别是随机森林)来分析以 1 分钟时间分辨率识别身体攻击事件的模式。共收集了 119 个攻击事件,持续时间为 7.3±13.1 分钟,总共包括 132 个身体攻击事件的 872 个 1 分钟时段。该模型实现了高精准度(80.2%)、准确性(82.0%)、召回率(85.0%)、F1 分数(82.4%)和曲线下面积(89.3%),以区分身体攻击时段。传感器衍生的矢量幅度特征(更快的三轴加速度)是模型中的第二个重要特征,可显著区分攻击和非攻击时段。如果在更大的样本中得到验证,该模型可为远程检测和管理儿童攻击事件提供实用且高效的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/859b/10221870/8dce39d054a8/sensors-23-04949-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验