Suppr超能文献

细胞混合物去卷积与血液、免疫和癌细胞生成的基因特征的比较分析。

Comparative Analysis of Cell Mixtures Deconvolution and Gene Signatures Generated for Blood, Immune and Cancer Cells.

机构信息

Cancer Research Center (CiC-IBMCC, CSIC/USAL & IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), & Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain.

Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.

出版信息

Int J Mol Sci. 2023 Jun 28;24(13):10765. doi: 10.3390/ijms241310765.

Abstract

In the last two decades, many detailed full transcriptomic studies on complex biological samples have been published and included in large gene expression repositories. These studies primarily provide a bulk expression signal for each sample, including multiple cell-types mixed within the global signal. The cellular heterogeneity in these mixtures does not allow the activity of specific genes in specific cell types to be identified. Therefore, inferring relative cellular composition is a very powerful tool to achieve a more accurate molecular profiling of complex biological samples. In recent decades, computational techniques have been developed to solve this problem by applying deconvolution methods, designed to decompose cell mixtures into their cellular components and calculate the relative proportions of these elements. Some of them only calculate the cell proportions (supervised methods), while other deconvolution algorithms can also identify the gene signatures specific for each cell type (unsupervised methods). In these work, five deconvolution methods (CIBERSORT, FARDEEP, DECONICA, LINSEED and ABIS) were implemented and used to analyze blood and immune cells, and also cancer cells, in complex mixture samples (using three bulk expression datasets). Our study provides three analytical tools (corrplots, cell-signature plots and bar-mixture plots) that allow a thorough comparative analysis of the cell mixture data. The work indicates that CIBERSORT is a robust method optimized for the identification of immune cell-types, but not as efficient in the identification of cancer cells. We also found that LINSEED is a very powerful unsupervised method that provides precise and specific gene signatures for each of the main immune cell types tested: neutrophils and monocytes (of the myeloid lineage), B-cells, NK cells and T-cells (of the lymphoid lineage), and also for cancer cells.

摘要

在过去的二十年中,已经发表了许多关于复杂生物样本的详细全转录组研究,并将其包含在大型基因表达数据库中。这些研究主要为每个样本提供了批量表达信号,其中包括在全局信号中混合的多种细胞类型。这些混合物中的细胞异质性不允许鉴定特定细胞类型中特定基因的活性。因此,推断相对细胞组成是实现对复杂生物样本更准确的分子分析的非常有效的工具。近几十年来,已经开发了计算技术来通过应用去卷积方法来解决这个问题,这些方法旨在将细胞混合物分解为其细胞成分,并计算这些元素的相对比例。其中一些仅计算细胞比例(有监督方法),而其他去卷积算法还可以识别每种细胞类型的基因特征(无监督方法)。在这些工作中,实施了五种去卷积方法(CIBERSORT、FARDEEP、DECONICA、LINSEED 和 ABIS),并用于分析复杂混合物样本中的血液和免疫细胞,以及癌细胞(使用三个批量表达数据集)。我们的研究提供了三个分析工具(相关图、细胞特征图和条形混合物图),允许对细胞混合物数据进行彻底的比较分析。该工作表明 CIBERSORT 是一种针对免疫细胞类型识别进行了优化的稳健方法,但在识别癌细胞方面效率不高。我们还发现 LINSEED 是一种非常强大的无监督方法,可为测试的主要免疫细胞类型(髓系的中性粒细胞和单核细胞、B 细胞、NK 细胞和 T 细胞)以及癌细胞提供精确和特定的基因特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42c5/10341895/1fbc17264ee4/ijms-24-10765-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验