Nugroho Wendy Triadji, Dong Yu, Pramanik Alokesh, Zhang Zhixiao, Ramakrishna Seeram
School of Civil and Mechanical Engineering, Curtin University, P.O. Box U1987, Perth, WA 6845, Australia.
School of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, China.
Nanomaterials (Basel). 2023 Jun 29;13(13):1975. doi: 10.3390/nano13131975.
Thermoplastic polyurethane (TPU) belongs to a polyurethane family that possesses an elongation much higher than 300%, despite having low mechanical strength, which can be overcome by incorporating clay-based halloysite nanotubes (HNTs) as additives to manufacture TPU/HNT nanocomposites. This paper focuses on the co-influence of HNT content and 3D printing parameters on the mechanical properties of 3D printed TPU/HNT nanocomposites in terms of tensile properties, hardness, and abrasion resistance via fused deposition modelling (FDM). The optimum factor-level combination for different responses was determined with the aid of robust statistical Taguchi design of experiments (DoEs). Material characterisation was also carried out to evaluate the surface morphology, nanofiller dispersion, chemical structure, thermal stability, and phase behaviour corresponding to the DoE results obtained. It is evidently shown that HNT level and infill density play a significant role in impacting mechanical properties of 3D-printed TPU/HNT nanocomposites.
热塑性聚氨酯(TPU)属于聚氨酯家族,尽管其机械强度较低,但其伸长率远高于300%,通过添加基于粘土的埃洛石纳米管(HNTs)作为添加剂来制造TPU/HNT纳米复合材料,可以克服这一缺点。本文通过熔融沉积建模(FDM),从拉伸性能、硬度和耐磨性方面,重点研究了HNT含量和3D打印参数对3D打印TPU/HNT纳米复合材料力学性能的共同影响。借助稳健统计田口实验设计(DoEs)确定了不同响应的最佳因素水平组合。还进行了材料表征,以评估与所获得的DoE结果相对应的表面形态、纳米填料分散、化学结构、热稳定性和相行为。结果表明,HNT含量和填充密度对3D打印TPU/HNT纳米复合材料的力学性能有显著影响。