文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁共振成像造影剂及未来展望

Contrast Agents of Magnetic Resonance Imaging and Future Perspective.

作者信息

Lv Jie, Roy Shubham, Xie Miao, Yang Xiulan, Guo Bing

机构信息

School of Computer Science and Engineering, Yulin Normal University, Yulin 537000, China.

Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology, Shenzhen 518055, China.

出版信息

Nanomaterials (Basel). 2023 Jul 4;13(13):2003. doi: 10.3390/nano13132003.


DOI:10.3390/nano13132003
PMID:37446520
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10343825/
Abstract

In recent times, magnetic resonance imaging (MRI) has emerged as a highly promising modality for diagnosing severe diseases. Its exceptional spatiotemporal resolution and ease of use have established it as an indispensable clinical diagnostic tool. Nevertheless, there are instances where MRI encounters challenges related to low contrast, necessitating the use of contrast agents (CAs). Significant efforts have been made by scientists to enhance the precision of observing diseased body parts by leveraging the synergistic potential of MRI in conjunction with other imaging techniques and thereby modifying the CAs. In this work, our focus is on elucidating the rational designing approach of CAs and optimizing their compatibility for multimodal imaging and other intelligent applications. Additionally, we emphasize the importance of incorporating various artificial intelligence tools, such as machine learning and deep learning, to explore the future prospects of disease diagnosis using MRI. We also address the limitations associated with these techniques and propose reasonable remedies, with the aim of advancing MRI as a cutting-edge diagnostic tool for the future.

摘要

近年来,磁共振成像(MRI)已成为诊断严重疾病的一种极具前景的方式。其卓越的时空分辨率和易用性使其成为不可或缺的临床诊断工具。然而,在某些情况下,MRI会遇到与低对比度相关的挑战,这就需要使用造影剂(CAs)。科学家们已做出巨大努力,通过利用MRI与其他成像技术的协同潜力并进而对造影剂进行改性,来提高观察患病身体部位的精度。在这项工作中,我们的重点是阐明造影剂的合理设计方法,并优化其在多模态成像和其他智能应用中的兼容性。此外,我们强调纳入各种人工智能工具(如机器学习和深度学习)以探索利用MRI进行疾病诊断的未来前景的重要性。我们还讨论了与这些技术相关的局限性并提出合理的补救措施,旨在将MRI发展成为未来的前沿诊断工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/5c7ae98336b3/nanomaterials-13-02003-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/bedf345996c5/nanomaterials-13-02003-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/2b46de8dd0bc/nanomaterials-13-02003-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/14b8232b112f/nanomaterials-13-02003-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/3a2b5c48fdcb/nanomaterials-13-02003-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/db50e22273d9/nanomaterials-13-02003-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/a9092a42c607/nanomaterials-13-02003-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/3d5f736a1b46/nanomaterials-13-02003-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/5dc4565c02b2/nanomaterials-13-02003-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/2ee5310169f0/nanomaterials-13-02003-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/adf1e1e1bb34/nanomaterials-13-02003-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/5c7ae98336b3/nanomaterials-13-02003-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/bedf345996c5/nanomaterials-13-02003-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/2b46de8dd0bc/nanomaterials-13-02003-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/14b8232b112f/nanomaterials-13-02003-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/3a2b5c48fdcb/nanomaterials-13-02003-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/db50e22273d9/nanomaterials-13-02003-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/a9092a42c607/nanomaterials-13-02003-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/3d5f736a1b46/nanomaterials-13-02003-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/5dc4565c02b2/nanomaterials-13-02003-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/2ee5310169f0/nanomaterials-13-02003-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/adf1e1e1bb34/nanomaterials-13-02003-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e41a/10343825/5c7ae98336b3/nanomaterials-13-02003-g011.jpg

相似文献

[1]
Contrast Agents of Magnetic Resonance Imaging and Future Perspective.

Nanomaterials (Basel). 2023-7-4

[2]
Recent Advances of Bioresponsive Nano-Sized Contrast Agents for Ultra-High-Field Magnetic Resonance Imaging.

Front Chem. 2020-3-20

[3]
MRI radiogenomics for intelligent diagnosis of breast tumors and accurate prediction of neoadjuvant chemotherapy responses-a review.

Comput Methods Programs Biomed. 2022-2

[4]
A Deep Learning Model for Classification of Parotid Neoplasms Based on Multimodal Magnetic Resonance Image Sequences.

Laryngoscope. 2023-2

[5]
Application of Machine Learning Techniques for Characterization of Ischemic Stroke with MRI Images: A Review.

Diagnostics (Basel). 2022-10-19

[6]
Contrast agents: magnetic resonance.

Handb Exp Pharmacol. 2008

[7]
Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: A review.

Comput Biol Med. 2021-9

[8]
Applications of artificial intelligence in multimodality cardiovascular imaging: A state-of-the-art review.

Prog Cardiovasc Dis. 2020-3-19

[9]
Emerging artificial intelligence applications in liver magnetic resonance imaging.

World J Gastroenterol. 2021-10-28

[10]
Dynamically switchable magnetic resonance imaging contrast agents.

Exploration (Beijing). 2021-9-30

引用本文的文献

[1]
Automatic design and optimization of MRI-based neurochemical sensors via reinforcement learning.

Discov Nano. 2025-9-1

[2]
The Influence of Light Rare-Earth Substitution on Electronic and Magnetic Properties of CoFeO Nanoparticles.

Nanomaterials (Basel). 2025-7-25

[3]
Toxicity Challenges and Current Advancement in Metal-Organic Frameworks (MOFs) for Biomedical Applications.

Biol Trace Elem Res. 2025-6-24

[4]
Ferrocene-Functionalized Black Phosphorus Nanoplatform Enables Targeted and Prolonged MRI Visualization of Atherosclerotic Plaques.

Adv Sci (Weinh). 2025-8

[5]
Emerging Trends in Hybrid Nanoparticles: Revolutionary Advances and Promising Biomedical Applications.

Curr Drug Metab. 2024

[6]
Contrast Agents Based on Human Serum Albumin and Nitroxides for H-MRI and Overhauser-Enhanced MRI.

Int J Mol Sci. 2024-4-5

[7]
Nanotheranostics: A Cutting-edge Technology for Cancer Management.

Curr Pharm Biotechnol. 2025

本文引用的文献

[1]
Decoding radiology reports: Potential application of OpenAI ChatGPT to enhance patient understanding of diagnostic reports.

Clin Imaging. 2023-9

[2]
Strategies for enhancing cancer chemodynamic therapy performance.

Exploration (Beijing). 2022-3-7

[3]
Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt learning: results, limitations, and potential.

Vis Comput Ind Biomed Art. 2023-5-18

[4]
MRI Contrasting Agent Based on Mn-MOF-74 Nanoparticles with Coordinatively Unsaturated Sites.

Mol Imaging Biol. 2023-10

[5]
A New OATP-Mediated Hepatobiliary-Specific Mn(II)-Based MRI Contrast Agent for Hepatocellular Carcinoma in Mice: A Comparison With Gd-EOB-DTPA.

J Magn Reson Imaging. 2023-9

[6]
Current advancement in the development of manganese complexes as magnetic resonance imaging probes.

J Inorg Biochem. 2022-12

[7]
Manganese complexes and manganese-based metal-organic frameworks as contrast agents in MRI and chemotherapeutics agents: Applications and prospects.

Colloids Surf B Biointerfaces. 2022-5

[8]
Machine Learning in Prostate MRI for Prostate Cancer: Current Status and Future Opportunities.

Diagnostics (Basel). 2022-1-24

[9]
Bacteria-Targeted MRI Probe-Based Imaging Bacterial Infection and Monitoring Antimicrobial Therapy In Vivo.

Small. 2021-11

[10]
Defining the conditions for the development of the emerging class of Fe-based MRI contrast agents.

Chem Sci. 2021-7-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索