Suppr超能文献

使用超深度算法在肺实质图像上检测肺结节。

Pulmonary nodule detection on lung parenchyma images using hyber-deep algorithm.

作者信息

Fang Da, Jiang Hao, Chen Wenyang, Qin Zhibao, Shi Junsheng, Zhang Jun

机构信息

School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China.

Yunnan Key Laboratory of Optoelectronic Information Technology, Kunming 650500, China.

出版信息

Heliyon. 2023 Jun 24;9(7):e17599. doi: 10.1016/j.heliyon.2023.e17599. eCollection 2023 Jul.

Abstract

The incidence of lung cancer has seen a significant increase in recent times, leading to a rise in fatalities. The detection of pulmonary nodules from CT images has emerged as an effective method to aid in the diagnosis of lung cancer. Ensuring information security holds utmost significance in the detection of nodules, with particular attention given to safeguarding patient privacy within the context of the Internet of Things (IoT). In this regard, migration learning emerges as a potent technique for preserving the confidentiality of patient data. Firstly, we applied several data-preprocessing steps such as lung segmentation based on K-Means, denoising methods, and lung parenchyma extraction through a dedicated medical IoT network. We used the Microsoft Common Object in Context (MS-COCO) dataset to pre-train the detection framework and fine-tuned it with the Lung Nodule Analysis 16 (LUNA16) dataset to adapt to nodule detection tasks. To evaluate the effectiveness of our proposed pipeline, we conducted extensive experiments that included subjective evaluation of detection results and quantitative data analysis. The results of these experiments demonstrated the efficacy of our approach in accurately detecting pulmonary nodules. Our study provides a promising framework for trustworthy pulmonary nodule detection on lung parenchyma images using a secured hyper-deep algorithm, which has the potential to improve lung cancer diagnosis and reduce fatalities associated with it.

摘要

近年来,肺癌的发病率显著上升,导致死亡人数增加。从CT图像中检测肺结节已成为辅助肺癌诊断的有效方法。在结节检测中,确保信息安全至关重要,尤其要在物联网(IoT)背景下保护患者隐私。在这方面,迁移学习成为保护患者数据机密性的有力技术。首先,我们应用了几个数据预处理步骤,如基于K-Means的肺部分割、去噪方法以及通过专用医疗物联网网络进行肺实质提取。我们使用微软上下文常见物体(MS-COCO)数据集对检测框架进行预训练,并使用肺结节分析16(LUNA16)数据集对其进行微调,以适应结节检测任务。为了评估我们提出的流程的有效性,我们进行了广泛的实验,包括对检测结果的主观评估和定量数据分析。这些实验结果证明了我们的方法在准确检测肺结节方面的有效性。我们的研究为使用安全的超深度算法在肺实质图像上进行可靠的肺结节检测提供了一个有前景的框架,这有可能改善肺癌诊断并降低与之相关的死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f08a/10336504/31e36b4e45cc/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验