Pooam Marootpong, El-Ballat Enas M, Jourdan Nathalie, Ali Hayssam M, Hano Christophe, Ahmad Margaret, El-Esawi Mohamed A
UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, 75005 Paris, France.
Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
Plants (Basel). 2023 Jul 23;12(14):2731. doi: 10.3390/plants12142731.
Arsenic (As) is one of the toxic heavy metal pollutants found in the environment. An excess of As poses serious threats to plants and diminishes their growth and productivity. NAC transcription factors revealed a pivotal role in enhancing crops tolerance to different environmental stresses. The present study investigated, for the first time, the functional role of in boosting As stress tolerance and grain productivity in rice ( L.). Two -overexpressing (-OX) and two -RNAi transgenic lines were created and validated. The wild-type and transgenic rice plants were exposed to different As stress levels (0, 25, and 50 µM). The results revealed that overexpression significantly improved rice tolerance to As stress and boosted grain yield traits. Under both levels of As stress (25 and 50 µM), -OX rice lines exhibited significantly lower levels of oxidative stress biomarkers and () expression, but they revealed increased levels of gas exchange characters, chlorophyll, osmolytes (soluble sugars, proteins, proline, phenols, and flavonoids), antioxidant enzymes (SOD, CAT, APX, and POD), and stress-tolerant genes expression (, , , , , , , and ) in comparison to wild-type plants. By contrast, suppression (RNAi) reduced grain yield components and reversed the aforementioned measured physio-biochemical and molecular traits. Taken together, this study is the first to demonstrate that plays a vital role in boosting As stress resistance and grain productivity in rice through modulating antioxidants, photosynthesis, osmolyte accumulation, and stress-related genes expression, and may be a useful candidate for further genetic enhancement of stress resistance in many crops.
砷(As)是环境中发现的有毒重金属污染物之一。过量的砷对植物构成严重威胁,会降低其生长和生产力。NAC转录因子在增强作物对不同环境胁迫的耐受性方面发挥着关键作用。本研究首次探究了[具体基因名称]在提高水稻([水稻品种名称])对砷胁迫的耐受性和籽粒生产力方面的功能作用。构建并验证了两个[基因名称]过表达([基因名称]-OX)和两个[基因名称]RNA干扰转基因株系。将野生型和转基因水稻植株暴露于不同水平的砷胁迫(0、25和50 μM)下。结果表明,[基因名称]过表达显著提高了水稻对砷胁迫的耐受性,并提高了籽粒产量性状。在两种砷胁迫水平(25和50 μM)下,[基因名称]-OX水稻株系的氧化应激生物标志物和[具体基因名称]([基因名称])表达水平显著降低,但与野生型植株相比,它们的气体交换特征、叶绿素、渗透调节物质(可溶性糖、蛋白质、脯氨酸、酚类和黄酮类)、抗氧化酶(超氧化物歧化酶、过氧化氢酶、抗坏血酸过氧化物酶和过氧化物酶)以及耐胁迫基因表达([一系列基因名称])水平有所提高。相比之下,[基因名称]抑制(RNA干扰)降低了籽粒产量构成因素,并逆转了上述测定的生理生化和分子性状。综上所述,本研究首次证明[基因名称]通过调节抗氧化剂、光合作用、渗透调节物质积累和胁迫相关基因表达,在提高水稻对砷胁迫的抗性和籽粒生产力方面发挥着至关重要的作用,并且可能是进一步遗传增强许多作物抗逆性的有用候选基因。