ISGlobal, Barcelona, Spain.
Universitat Pompeu Fabra (UPF), Barcelona, Spain.
Int J Health Policy Manag. 2023;12:7103. doi: 10.34172/ijhpm.2023.7103. Epub 2023 Mar 13.
Health impact assessment (HIA) is a widely used process that aims to identify the health impacts, positive or negative, of a policy or intervention that is not necessarily placed in the health sector. Most HIAs are done prospectively and aim to forecast expected health impacts under assumed policy implementation. HIAs may quantitatively and/ or qualitatively assess health impacts, with this study focusing on the former. A variety of quantitative modelling methods exist that are used for forecasting health impacts, however, they differ in application area, data requirements, assumptions, risk modelling, complexities, limitations, strengths, and comprehensibility. We reviewed relevant models, so as to provide public health researchers with considerations for HIA model choice.
Based on an HIA expert consultation, combined with a narrative literature review, we identified the most relevant models that can be used for health impact forecasting. We narratively and comparatively reviewed the models, according to their fields of application, their configuration and purposes, counterfactual scenarios, underlying assumptions, health risk modelling, limitations and strengths.
Seven relevant models for health impacts forecasting were identified, consisting of () comparative risk assessment (CRA), () time series analysis (TSA), () compartmental models (CMs), () structural models (SMs), () agent-based models (ABMs), () microsimulations (MS), and () artificial intelligence (AI)/machine learning (ML). These models represent a variety in approaches and vary in the fields of HIA application, complexity and comprehensibility. We provide a set of criteria for HIA model choice. Researchers must consider that model input assumptions match the available data and parameter structures, the available resources, and that model outputs match the research question, meet expectations and are comprehensible to end-users.
The reviewed models have specific characteristics, related to available data and parameter structures, computational implementation, interpretation and comprehensibility, which the researcher should critically consider before HIA model choice.
健康影响评估(HIA)是一种广泛使用的过程,旨在识别政策或干预措施的健康影响,无论这些影响是积极的还是消极的,而这些政策或干预措施不一定在卫生部门实施。大多数 HIA 都是前瞻性的,旨在根据假设的政策实施情况预测预期的健康影响。HIA 可以定量和/或定性地评估健康影响,本研究侧重于前者。存在各种用于预测健康影响的定量建模方法,但是,它们在应用领域、数据要求、假设、风险建模、复杂性、局限性、优势和可理解性方面有所不同。我们回顾了相关模型,以便为公共卫生研究人员提供 HIA 模型选择的考虑因素。
基于 HIA 专家咨询,结合叙述性文献回顾,我们确定了最相关的可用于健康影响预测的模型。我们根据其应用领域、配置和目的、反事实情景、基本假设、健康风险建模、局限性和优势,对模型进行了叙述性和比较性的回顾。
确定了 7 种用于健康影响预测的相关模型,包括()比较风险评估(CRA)、()时间序列分析(TSA)、()房室模型(CMs)、()结构模型(SMs)、()基于代理的模型(ABMs)、()微观模拟(MS)和()人工智能(AI)/机器学习(ML)。这些模型代表了各种方法,在 HIA 应用领域、复杂性和可理解性方面存在差异。我们提供了一套 HIA 模型选择标准。研究人员必须考虑模型输入假设是否与可用数据和参数结构、可用资源相匹配,以及模型输出是否与研究问题、期望和最终用户的可理解性相匹配。
所审查的模型具有特定的特征,与可用数据和参数结构、计算实现、解释和可理解性有关,研究人员在选择 HIA 模型之前应批判性地考虑这些特征。