Suppr超能文献

CardioVision:一个用于医疗影像分割和重建的全自动化深度学习工具包,可生成主动脉瓣狭窄患者的数字孪生体。

CardioVision: A fully automated deep learning package for medical image segmentation and reconstruction generating digital twins for patients with aortic stenosis.

机构信息

Division of Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Comput Med Imaging Graph. 2023 Oct;109:102289. doi: 10.1016/j.compmedimag.2023.102289. Epub 2023 Aug 19.

Abstract

Aortic stenosis (AS) is the most prevalent heart valve disease in western countries that poses a significant public health challenge due to the lack of a medical treatment to prevent valve calcification. Given the aging population demographic, the prevalence of AS is projected to rise, resulting in a progressively significant healthcare and economic burden. While surgical aortic valve replacement (SAVR) has been the gold standard approach, the less invasive transcatheter aortic valve replacement (TAVR) is poised to become the dominant method for high- and medium-risk interventions. Computational simulations using patient-specific models, have opened new research avenues for optimizing emerging devices and predicting clinical outcomes. The traditional techniques of generating digital replicas of patients' aortic root, native valve, and calcification are time-consuming and labor-intensive processes requiring specialized tools and expertise in anatomy. Alternatively, deep learning models, such as the U-Net architecture, have emerged as reliable and fully automated methods for medical image segmentation. Two-dimensional U-Nets have been shown to produce comparable or more accurate results than trained clinicians' manual segmentation while significantly reducing computational costs. In this study, we have developed a fully automatic AI tool capable of reconstructing the digital twin geometry and analyzing the calcification distribution on the aortic valve. The developed automatic segmentation package enables the modeling of patient-specific anatomies, which can then be used to simulate virtual interventional procedures, optimize emerging prosthetic devices, and predict clinical outcomes.

摘要

主动脉瓣狭窄(AS)是西方国家最常见的心脏瓣膜病,由于缺乏预防瓣膜钙化的治疗方法,因此对公众健康构成了重大挑战。鉴于人口老龄化,AS 的患病率预计会上升,从而导致医疗保健和经济负担逐渐加重。虽然外科主动脉瓣置换术(SAVR)是金标准方法,但创伤较小的经导管主动脉瓣置换术(TAVR)有望成为高风险和中风险干预的主要方法。使用患者特定模型的计算模拟为优化新兴设备和预测临床结果开辟了新的研究途径。生成患者主动脉根部、原生瓣膜和钙化的数字复制品的传统技术是耗时且劳动密集型的过程,需要专门的工具和解剖学专业知识。另一方面,深度学习模型,如 U-Net 架构,已成为用于医学图像分割的可靠和全自动方法。二维 U-Nets 已被证明可以产生与经过训练的临床医生手动分割相当或更准确的结果,同时大大降低了计算成本。在这项研究中,我们开发了一种全自动人工智能工具,能够重建数字双胞胎的几何形状并分析主动脉瓣上的钙化分布。开发的自动分割软件包能够对患者特定的解剖结构进行建模,然后可以用于模拟虚拟介入程序、优化新兴的假体设备和预测临床结果。

相似文献

引用本文的文献

2
Digital twins for the era of personalized surgery.个性化手术时代的数字孪生体。
NPJ Digit Med. 2025 May 15;8(1):283. doi: 10.1038/s41746-025-01575-5.
8
Editorial: Experts' opinion in medicine 2022.社论:2022年医学专家意见
Front Med (Lausanne). 2023 Oct 10;10:1296196. doi: 10.3389/fmed.2023.1296196. eCollection 2023.

本文引用的文献

6
A design-based model of the aortic valve for fluid-structure interaction.用于流固耦合的主动脉瓣设计模型。
Biomech Model Mechanobiol. 2021 Dec;20(6):2413-2435. doi: 10.1007/s10237-021-01516-7. Epub 2021 Sep 21.
7
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.广义骰子重叠作为高度不平衡分割的深度学习损失函数
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
10
STS-ACC TVT Registry of Transcatheter Aortic Valve Replacement.经导管主动脉瓣置换术的STS-ACC TVT注册研究
J Am Coll Cardiol. 2020 Nov 24;76(21):2492-2516. doi: 10.1016/j.jacc.2020.09.595.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验