Xu Peng, Schumacher Dominik, Liu Chuan, Harms Andrea, Dickmanns Marcel, Beck Florian, Plitzko Jürgen M, Baumeister Wolfgang, Søgaard-Andersen Lotte
Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany.
Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2419610121. doi: 10.1073/pnas.2419610121. Epub 2024 Dec 31.
In most bacteria, cell division depends on the tubulin-homolog FtsZ that polymerizes in a GTP-dependent manner to form the cytokinetic Z-ring at the future division site. Subsequently, the Z-ring recruits, directly or indirectly, all other proteins of the divisome complex that executes cytokinesis. A critical step in this process is the precise positioning of the Z-ring at the future division site. While the divisome proteins are generally conserved, the regulatory systems that position the Z-ring are more diverse. However, these systems have in common that they modulate FtsZ polymerization. In PomX, PomY, and PomZ form precisely one MDa-sized, nonstoichiometric, nucleoid-associated assembly that spatiotemporally guides Z-ring formation. Here, using cryo-correlative light and electron microscopy together with in situ cryoelectron tomography, we determine the PomXYZ assembly's architecture at close-to-live conditions. PomX forms a porous meshwork of randomly intertwined filaments. Templated by this meshwork, the phase-separating PomY protein forms a biomolecular condensate that compacts and bends the PomX filaments, resulting in the formation of a selective PomXYZ co-condensate that is associated to the nucleoid by PomZ. These studies reveal a hitherto undescribed supramolecular structure and provide a framework for understanding how a nonstoichiometric co-condensate forms, maintains number control, and nucleates GTP-dependent FtsZ polymerization to precisely regulate cell division.
在大多数细菌中,细胞分裂依赖于微管蛋白同源物FtsZ,它以GTP依赖的方式聚合,在未来的分裂位点形成细胞分裂的Z环。随后,Z环直接或间接地招募执行胞质分裂的分裂体复合物的所有其他蛋白质。这个过程中的一个关键步骤是Z环在未来分裂位点的精确定位。虽然分裂体蛋白通常是保守的,但定位Z环的调节系统则更加多样化。然而,这些系统的共同之处在于它们调节FtsZ的聚合。在新月柄杆菌中,PomX、PomY和PomZ精确地形成一个大小为1兆道尔顿的、非化学计量的、与类核相关的组装体,它在时空上引导Z环的形成。在这里,我们使用冷冻相关光电子显微镜和原位冷冻电子断层扫描技术,在接近活细胞的条件下确定了PomXYZ组装体的结构。PomX形成了一个由随机交织的细丝组成的多孔网络。在这个网络的模板作用下,发生相分离的PomY蛋白形成了一个生物分子凝聚物,它压缩并弯曲了PomX细丝,导致形成了一个选择性的PomXYZ共凝聚物,该共凝聚物通过PomZ与类核相关联。这些研究揭示了一种迄今为止未被描述的超分子结构,并为理解非化学计量的共凝聚物如何形成、维持数量控制以及引发GTP依赖的FtsZ聚合以精确调节细胞分裂提供了一个框架。