文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

鞣酸介导合成花状介孔 MnO 纳米结构作为 T1-T2 双模态 MRI 造影剂和双酶模拟物。

Tannic acid-mediated synthesis of flower-like mesoporous MnO nanostructures as T-T dual-modal MRI contrast agents and dual-enzyme mimetic agents.

机构信息

Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.

Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.

出版信息

Sci Rep. 2023 Sep 5;13(1):14606. doi: 10.1038/s41598-023-41598-0.


DOI:10.1038/s41598-023-41598-0
PMID:37670132
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10480446/
Abstract

This study introduces a simple method for preparing a new generation of MnO nanomaterials (MNMs) using tannic acid as a template. Two shapes of MnO NMs, flower-like M1-MnO and near-spherical M2-MnO, were prepared and compared as dual-active nanozymes and contrast agents in magnetic resonance imaging (MRI). Various parameters, including the crystallinity, morphology, magnetic saturation (M), surface functionality, surface area, and porosity of the MNMs were investigated. Flower-like M1-MnO NMs were biocompatible and exhibited pH-sensitive oxidase and peroxidase mimetic activity, more potent than near-spherical M2-MnO. Furthermore, the signal intensity and r relaxivity strongly depended on the crystallinity, morphology, pore size, and specific surface area of the synthesized MNMs. Our findings suggest that flower-like M1-MnO NM with acceptable dual-enzyme mimetic (oxidase-like and peroxidase-like) and T MRI contrast activities could be employed as a promising theranostic system for future purposes.

摘要

本研究介绍了一种使用单宁酸作为模板制备新一代 MnO 纳米材料(MNMs)的简单方法。制备了两种形状的 MnO NM,花状 M1-MnO 和近球形 M2-MnO,并将其用作磁共振成像(MRI)中的双活性纳米酶和对比剂。研究了 MNMs 的结晶度、形态、磁饱和(M)、表面功能、表面积和孔隙率等各种参数。花状 M1-MnO NM 具有生物相容性,并表现出 pH 敏感的氧化酶和过氧化物酶模拟活性,比近球形 M2-MnO 更有效。此外,信号强度和 r 弛豫率强烈依赖于所合成的 MNMs 的结晶度、形态、孔径和比表面积。我们的研究结果表明,具有可接受的双酶模拟(氧化酶样和过氧化物酶样)和 T MRI 对比活性的花状 M1-MnO NM 可用作未来治疗系统的有前途的治疗诊断系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/1e7f51fc5ad3/41598_2023_41598_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/ab9811775155/41598_2023_41598_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/b1d5017bda8b/41598_2023_41598_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/429277fc09b1/41598_2023_41598_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/e882b1e36c16/41598_2023_41598_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/214725902a02/41598_2023_41598_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/414c7c246a5d/41598_2023_41598_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/2d260841857c/41598_2023_41598_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/53c9c902d078/41598_2023_41598_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/42ed5524d123/41598_2023_41598_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/1e7f51fc5ad3/41598_2023_41598_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/ab9811775155/41598_2023_41598_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/b1d5017bda8b/41598_2023_41598_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/429277fc09b1/41598_2023_41598_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/e882b1e36c16/41598_2023_41598_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/214725902a02/41598_2023_41598_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/414c7c246a5d/41598_2023_41598_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/2d260841857c/41598_2023_41598_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/53c9c902d078/41598_2023_41598_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/42ed5524d123/41598_2023_41598_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ee4/10480446/1e7f51fc5ad3/41598_2023_41598_Fig10_HTML.jpg

相似文献

[1]
Tannic acid-mediated synthesis of flower-like mesoporous MnO nanostructures as T-T dual-modal MRI contrast agents and dual-enzyme mimetic agents.

Sci Rep. 2023-9-5

[2]
A pH-responsive T-T dual-modal MRI contrast agent for cancer imaging.

Nat Commun. 2022-12-26

[3]
Ultra-small manganese dioxide nanoparticles with high relaxivity for magnetic resonance angiography.

Biomater Sci. 2023-6-13

[4]
Tunable Performance of Manganese Oxide Nanostructures as MRI Contrast Agents.

Chemistry. 2017-12-18

[5]
Synthesis Of PEG-Coated, Ultrasmall, Manganese-Doped Iron Oxide Nanoparticles With High Relaxivity For T/T Dual-Contrast Magnetic Resonance Imaging.

Int J Nanomedicine. 2019-10-24

[6]
Synthesis of Ferromagnetic Fe0.6 Mn0.4 O Nanoflowers as a New Class of Magnetic Theranostic Platform for In Vivo T1 -T2 Dual-Mode Magnetic Resonance Imaging and Magnetic Hyperthermia Therapy.

Adv Healthc Mater. 2016-6-14

[7]
DNA-Templated Silver Nanocluster/Porphyrin/MnO Platform for Label-Free Intracellular Zn Imaging and Fluorescence-/Magnetic Resonance Imaging-Guided Photodynamic Therapy.

ACS Appl Mater Interfaces. 2019-4-3

[8]
MRI-guided dual-responsive anti-tumor nanostructures for synergistic chemo-photothermal therapy and chemodynamic therapy.

Acta Biomater. 2023-3-1

[9]
Preparation of MnO@poly-(DMAEMA-co-IA)-conjugated methotrexate nano-complex for MRI and radiotherapy of breast cancer application.

MAGMA. 2023-10

[10]
Multifunctional Smart Yolk-Shell Nanostructure with Mesoporous MnO Shell for Enhanced Cancer Therapy.

ACS Appl Mater Interfaces. 2020-9-2

引用本文的文献

[1]
Rapid synthesis of manganese dioxide nanoparticles for enhanced biocompatibility and theranostic applications.

RSC Adv. 2025-1-30

[2]
CoMnO Nanoflower-Based Smartphone Sensing Platform and Virtual Reality Display for Colorimetric Detection of Ziram and Cu.

Biosensors (Basel). 2024-4-6

本文引用的文献

[1]
Liquid exfoliation of ultrasmall zirconium carbide nanodots as a noninflammatory photothermal agent in the treatment of glioma.

Biomaterials. 2023-1

[2]
Cancer cell membrane-coated C-TiO hollow nanoshells for combined sonodynamic and hypoxia-activated chemotherapy.

Acta Biomater. 2022-10-15

[3]
Multifunctional hemoporfin-CuS-MnO for magnetic resonance imaging-guided catalytically-assisted photothermal-sonodynamic therapies.

J Colloid Interface Sci. 2022-11-15

[4]
Gadolinium-Based Contrast Agents: Updates and Answers to Typical Questions Regarding Gadolinium Use.

Tex Heart Inst J. 2022-5-1

[5]
Highly water-dispersible calcium lignosulfonate-capped MnO nanoparticles as a MRI contrast agent with exceptional colloidal stability, low toxicity and remarkable relaxivity.

RSC Adv. 2019-12-6

[6]
Fe-Coordinated Carbon Nanozyme Dots as Peroxidase-Like Nanozymes and Magnetic Resonance Imaging Contrast Agents.

ACS Appl Bio Mater. 2021-7-19

[7]
Effects of Calcination Temperature on the Phase Composition, Photocatalytic Degradation, and Virucidal Activities of TiO Nanoparticles.

ACS Omega. 2021-3-25

[8]
Multi-stimuli responsive hollow MnO-based drug delivery system for magnetic resonance imaging and combined chemo-chemodynamic cancer therapy.

Acta Biomater. 2021-5

[9]
Extract-Mediated ZnO Nanoparticles Loaded with Indole-3-Carbinol for Enhancement of Anticancer Efficacy in the A549 Human Lung Carcinoma Cell Line.

Materials (Basel). 2020-7-17

[10]
Tailored biological retention and efficient clearance of pegylated ultra-small MnO nanoparticles as positive MRI contrast agents for molecular imaging.

J Mater Chem B. 2014-4-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索