Suppr超能文献

基于氧化锌薄膜晶体管的多模态脑电活性电极阵列。

Multimodal Electrocorticogram Active Electrode Array Based on Zinc Oxide-Thin Film Transistors.

机构信息

Key Laboratory of Biomedical Engineering of Ministry of Education, Qiushi Academy for Advanced Studies, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.

College of Information Science and Electronic Engineering, Frontier Center of Brain Science and Brain-machine Integration, Cancer Center, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.

出版信息

Adv Sci (Weinh). 2023 Jan;10(2):e2204467. doi: 10.1002/advs.202204467. Epub 2022 Nov 20.

Abstract

Active electrocorticogram (ECoG) electrodes can amplify weak electrophysiological signals and improve anti-interference ability; however, traditional active electrodes are opaque and cannot realize photoelectric collaborative observation. In this study, an active and fully transparent ECoG array based on zinc oxide thin-film transistors (ZnO TFTs) is developed as a local neural signal amplifier for electrophysiological monitoring. The transparency of the proposed ECoG array is up to 85%, which is superior to that of the previously reported active electrode arrays. Various electrical characterizations have demonstrated its ability to record electrophysiological signals with a higher signal-to-noise ratio of 19.9 dB compared to the Au grid (13.2 dB). The high transparency of the ZnO-TFT electrode array allows the concurrent collection of high-quality electrophysiological signals (32.2 dB) under direct optical stimulation of the optogenetic mice brain. The ECoG array can also work under 7-Tesla magnetic resonance imaging to record local brain signals without affecting brain tissue imaging. As the most transparent active ECoG array to date, it provides a powerful multimodal tool for brain observation, including recording brain activity under synchronized optical modulation and 7-Tesla magnetic resonance imaging.

摘要

活性脑电(ECoG)电极可以放大微弱的电生理信号并提高抗干扰能力;然而,传统的主动电极是不透明的,无法实现光电协同观察。在这项研究中,开发了一种基于氧化锌薄膜晶体管(ZnO TFT)的主动式全透明 ECoG 阵列,作为电生理监测的局部神经信号放大器。所提出的 ECoG 阵列的透明度高达 85%,优于之前报道的主动电极阵列。各种电特性表明,与 Au 网格(13.2dB)相比,它具有更高信噪比的电生理信号记录能力(19.9dB)。ZnO-TFT 电极阵列的高透明度允许在光遗传小鼠大脑的直接光学刺激下同时采集高质量的电生理信号(32.2dB)。ECoG 阵列还可以在 7T 磁共振成像下工作,在不影响脑组织成像的情况下记录局部脑信号。作为迄今为止最透明的主动 ECoG 阵列,它为大脑观察提供了强大的多模态工具,包括在同步光学调制和 7T 磁共振成像下记录大脑活动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3405/9839861/26460cd38ce4/ADVS-10-2204467-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验