Suppr超能文献

基于还原氧化石墨烯增强水凝胶应变传感器的手势识别系统用于康复训练

Gesture Recognition System Using Reduced Graphene Oxide-Enhanced Hydrogel Strain Sensors for Rehabilitation Training.

作者信息

Li Wen, Wu Shunxin, Li Simou, Zhong Xiyang, Zhang Xiaobo, Qiao Hao, Kang Meicun, Chen Jinghan, Wang Ping, Tao Lu-Qi

机构信息

State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China.

Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China.

出版信息

ACS Appl Mater Interfaces. 2023 Sep 27;15(38):45106-45115. doi: 10.1021/acsami.3c08709. Epub 2023 Sep 12.

Abstract

Gesture recognition systems epitomize a modern and intelligent approach to rehabilitative training, finding utility in assisted driving, sign language comprehension, and machine control. However, wearable devices that can monitor and motivate physically rehabilitated people in real time remain little studied. Here, we present an innovative gesture recognition system that integrates hydrogel strain sensors with machine learning to facilitate finger rehabilitation training. PSTG (PAM/SA/TG) hydrogels are constructed by thermal polymerization of acrylamide (AM), sodium alginate (SA), and tannic acid-reduced graphene oxide (TA-rGO, TG), with AM polymerizing into polyacrylamide (PAM). The surface of TG has abundant functional groups that can establish multiple hydrogen bonds with PAM and SA chains to endow the hydrogel with high stretchability and mechanical stability. Our strain sensor boasts impressive sensitivity (Gauge factor = 6.13), a fast response time (40.5 ms), and high linearity ( = 0.999), making it an effective tool for monitoring human joint movements and pronunciation. Leveraging machine learning techniques, our gesture recognition system accurately discerns nine distinct types of gestures with a recognition accuracy of 100%. Our research drives wearable advancements, elevating the landscape of patient rehabilitation and augmenting gesture recognition systems' healthcare applications.

摘要

手势识别系统是康复训练的一种现代智能方法,在辅助驾驶、手语理解和机器控制中都有应用。然而,能够实时监测并激励身体康复者的可穿戴设备仍鲜少被研究。在此,我们展示了一种创新的手势识别系统,它将水凝胶应变传感器与机器学习相结合,以促进手指康复训练。PSTG(PAM/SA/TG)水凝胶通过丙烯酰胺(AM)、海藻酸钠(SA)和单宁酸还原氧化石墨烯(TA-rGO,TG)的热聚合反应构建而成,其中AM聚合成聚丙烯酰胺(PAM)。TG表面有丰富的官能团,能与PAM和SA链建立多个氢键,赋予水凝胶高拉伸性和机械稳定性。我们的应变传感器具有令人印象深刻的灵敏度(应变片系数 = 6.1)、快速响应时间(40.5毫秒)和高线性度( = 0.999),使其成为监测人体关节运动和发音的有效工具。利用机器学习技术,我们的手势识别系统能准确识别九种不同类型的手势,识别准确率达100%。我们的研究推动了可穿戴设备的发展,提升了患者康复的水平,并扩大了手势识别系统在医疗保健方面的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验