Suppr超能文献

深度学习在癌症预后预测模型中的应用。

Application of Deep Learning in Cancer Prognosis Prediction Model.

机构信息

Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China.

Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China.

出版信息

Technol Cancer Res Treat. 2023 Jan-Dec;22:15330338231199287. doi: 10.1177/15330338231199287.

Abstract

As an important branch of artificial intelligence and machine learning, deep learning (DL) has been widely used in various aspects of cancer auxiliary diagnosis, among which cancer prognosis is the most important part. High-accuracy cancer prognosis is beneficial to the clinical management of patients with cancer. Compared with other methods, DL models can significantly improve the accuracy of prediction. Therefore, this article is a systematic review of the latest research on DL in cancer prognosis prediction. First, the data type, construction process, and performance evaluation index of the DL model are introduced in detail. Then, the current mainstream baseline DL cancer prognosis prediction models, namely, deep neural networks, convolutional neural networks, deep belief networks, deep residual networks, and vision transformers, including network architectures, the latest application in cancer prognosis, and their respective characteristics, are discussed. Next, some key factors that affect the predictive performance of the model and common performance enhancement techniques are listed. Finally, the limitations of the DL cancer prognosis prediction model in clinical practice are summarized, and the future research direction is prospected. This article could provide relevant researchers with a comprehensive understanding of DL cancer prognostic models and is expected to promote the research progress of cancer prognosis prediction.

摘要

作为人工智能和机器学习的一个重要分支,深度学习(DL)已经广泛应用于癌症辅助诊断的各个方面,其中癌症预后是最重要的部分。高精度的癌症预后有利于癌症患者的临床管理。与其他方法相比,DL 模型可以显著提高预测的准确性。因此,本文对 DL 在癌症预后预测方面的最新研究进行了系统综述。首先,详细介绍了 DL 模型的数据类型、构建过程和性能评估指标。然后,讨论了目前主流的基于 DL 的癌症预后预测模型,即深度神经网络、卷积神经网络、深度置信网络、深度残差网络和视觉转换器,包括网络架构、在癌症预后中的最新应用以及各自的特点。接下来,列出了影响模型预测性能的一些关键因素和常见的性能增强技术。最后,总结了 DL 癌症预后预测模型在临床实践中的局限性,并展望了未来的研究方向。本文可以为相关研究人员提供对 DL 癌症预后模型的全面了解,有望促进癌症预后预测的研究进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ea6/10503281/fea62d0304e1/10.1177_15330338231199287-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验