School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia.
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia.
Adv Healthc Mater. 2024 Jan;13(1):e2301039. doi: 10.1002/adhm.202301039. Epub 2023 Oct 5.
The use of biomaterials in implanted medical devices remains hampered by platelet adhesion and blood coagulation. Thrombus formation is a prevalent cause of failure of these blood-contacting devices. Although systemic anticoagulant can be used to support materials and devices with poor blood compatibility, its negative effects such as an increased chance of bleeding, make materials with superior hemocompatibility extremely attractive, especially for long-term applications. This review examines blood-surface interactions, the pathogenesis of clotting on blood-contacting medical devices, popular surface modification techniques, mechanisms of action of anticoagulant coatings, and discusses future directions in biomaterial research for preventing thrombosis. In addition, this paper comprehensively reviews several novel methods that either entirely prevent interaction between material surfaces and blood components or regulate the reaction of the coagulation cascade, thrombocytes, and leukocytes.
生物材料在植入式医疗器械中的应用仍然受到血小板黏附和血液凝固的阻碍。血栓形成是这些与血液接触的器械失效的一个常见原因。虽然可以使用全身抗凝剂来支持血液相容性差的材料和器械,但它的副作用,如出血风险增加,使得具有优异血液相容性的材料极具吸引力,特别是对于长期应用。本综述探讨了血液-表面相互作用、与血液接触的医疗器械上血栓形成的发病机制、流行的表面改性技术、抗凝涂层的作用机制,并讨论了预防血栓形成的生物材料研究的未来方向。此外,本文还全面回顾了几种新颖的方法,这些方法要么完全阻止材料表面与血液成分之间的相互作用,要么调节凝血级联、血小板和白细胞的反应。