Suppr超能文献

捕捉姿势数据中持续的、长时间尺度的行为变化。

Capturing continuous, long timescale behavioral changes in postural data.

作者信息

McKenzie-Smith Grace C, Wolf Scott W, Ayroles Julien F, Shaevitz Joshua W

机构信息

Department of Physics, Princeton University, Princeton, NJ, USA.

Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.

出版信息

ArXiv. 2023 Sep 7:arXiv:2309.04044v1.

Abstract

Animal behavior spans many timescales, from short, seconds-scale actions to circadian rhythms over many hours to life-long changes during aging. Most quantitative behavior studies have focused on short-timescale behaviors such as locomotion and grooming. Analysis of these data suggests there exists a hierarchy of timescales; however, the limited duration of these experiments prevents the investigation of the full temporal structure. To access longer timescales of behavior, we continuously recorded individual at 100 frames per second for up to 7 days at a time in featureless arenas on sucrose-agarose media. We use the deep learning framework SLEAP to produce a full-body postural data set for 47 individuals resulting in nearly 2 billion pose instances. We identify stereotyped behaviors such as grooming, proboscis extension, and locomotion and use the resulting ethograms to explore how the flies' behavior varies across time of day and days in the experiment. We find distinct circadian patterns in all of our stereotyped behavior and also see changes in behavior over the course of the experiment as the flies weaken and die.

摘要

动物行为跨越多个时间尺度,从短暂的、以秒为单位的动作到持续数小时的昼夜节律,再到衰老过程中的终身变化。大多数定量行为研究都集中在短时间尺度的行为上,如运动和梳理。对这些数据的分析表明存在时间尺度层次结构;然而,这些实验的有限持续时间阻碍了对完整时间结构的研究。为了研究更长时间尺度的行为,我们在蔗糖-琼脂糖培养基上的无特征区域中,以每秒100帧的速度连续记录个体长达7天。我们使用深度学习框架SLEAP为47个个体生成了一个全身姿势数据集,产生了近20亿个姿势实例。我们识别出梳理、喙伸展和运动等刻板行为,并使用由此产生的行为图来探索果蝇的行为在一天中的不同时间以及实验中的不同天数是如何变化的。我们在所有刻板行为中都发现了明显的昼夜节律模式,并且还观察到随着果蝇变弱和死亡,实验过程中行为的变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验