Siri D, Kocherla Raviteja, Tumkunta Sudharshan, Udayaraju Pamula, Gogineni Krishna Chaitanya, Mamidisetti Gowtham, Boddu Nanditha
Department of CSE, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India.
Department of Computer Science and Engineering, Malla Reddy University, Hyderabad, 500043, India.
Sci Rep. 2025 May 22;15(1):17875. doi: 10.1038/s41598-025-02889-w.
Sepsis remains a leading cause of mortality in critical care settings, necessitating timely and accurate risk stratification. However, existing machine learning models for sepsis prediction often suffer from poor interpretability, limited generalizability across diverse patient populations, and challenges in handling class imbalance and high-dimensional clinical data. To address these gaps, this study proposes a novel framework that integrates bio-inspired feature selection and graph-based deep learning for enhanced sepsis risk prediction. Using the MIMIC-IV dataset, we employ the Wolverine Optimization Algorithm (WoOA) to select clinically relevant features, followed by a Generative Pre-Training Graph Neural Network (GPT-GNN) that models complex patient relationships through self-supervised learning. To further improve predictive accuracy, the TOTO metaheuristic algorithm is applied for model fine-tuning. SMOTE is used to balance the dataset and mitigate bias toward the majority class. Experimental results show that our model outperforms traditional classifiers such as SVM, XGBoost, and LightGBM in terms of accuracy, AUC, and F1-score, while also providing interpretable mortality indicators. This research contributes a scalable and high-performing decision support tool for sepsis risk stratification in real-world clinical environments.
脓毒症仍然是重症监护环境中导致死亡的主要原因,因此需要及时、准确的风险分层。然而,现有的用于脓毒症预测的机器学习模型往往存在可解释性差、在不同患者群体中的泛化性有限以及处理类别不平衡和高维临床数据方面的挑战。为了解决这些差距,本研究提出了一种新颖的框架,该框架整合了受生物启发的特征选择和基于图的深度学习,以增强脓毒症风险预测。使用MIMIC-IV数据集,我们采用金刚狼优化算法(WoOA)来选择临床相关特征,随后是一个生成式预训练图神经网络(GPT-GNN),它通过自监督学习对复杂的患者关系进行建模。为了进一步提高预测准确性,应用TOTO元启发式算法对模型进行微调。使用SMOTE来平衡数据集并减轻对多数类别的偏差。实验结果表明,我们的模型在准确性、AUC和F1分数方面优于支持向量机(SVM)、极端梯度提升(XGBoost)和轻量级梯度提升机(LightGBM)等传统分类器,同时还提供了可解释的死亡率指标。本研究为现实临床环境中的脓毒症风险分层贡献了一种可扩展且高性能的决策支持工具。