Suppr超能文献

基于人工神经网络方法对母羊四种传染性致病微生物(、、和)所致不明流产负担进行建模:控制政策的流行病学基础。

Modelling the Unidentified Abortion Burden from Four Infectious Pathogenic Microorganisms (, , , and ) in Ewes Based on Artificial Neural Networks Approach: The Epidemiological Basis for a Control Policy.

作者信息

Arteaga-Troncoso Gabriel, Luna-Alvarez Miguel, Hernández-Andrade Laura, Jiménez-Estrada Juan Manuel, Sánchez-Cordero Víctor, Botello Francisco, Montes de Oca-Jiménez Roberto, López-Hurtado Marcela, Guerra-Infante Fernando M

机构信息

Department of Cellular Biology and Development, Instituto Nacional de Perinatología, Ciudad de Mexico 11000, Mexico.

Military School of Health Officers, University of the Mexican Army and Air Force, SEDENA, Ciudad de Mexico 11650, Mexico.

出版信息

Animals (Basel). 2023 Sep 18;13(18):2955. doi: 10.3390/ani13182955.

Abstract

UNLABELLED

Unidentified abortion, of which leptospirosis, brucellosis, and ovine enzootic abortion are important factors, is the main cause of disease spread between animals and humans in all agricultural systems in most developing countries. Although there are well-defined risk factors for these diseases, these characteristics do not represent the prevalence of the disease in different regions. This study predicts the unidentified abortion burden from multi-microorganisms in ewes based on an artificial neural networks approach and the GLM.

METHODS

A two-stage cluster survey design was conducted to estimate the seroprevalence of abortifacient microorganisms and to identify putative factors of infectious abortion.

RESULTS

The overall seroprevalence of was 70.7%, while spp. was 55.2%, was 21.9%, and was 7.4%. Serological detection with four abortion-causing microorganisms was determined only in 0.87% of sheep sampled. The best GLM is integrated via serological detection of serovar Hardjo and in animals of the slopes with elevation between 2600 and 2800 meters above sea level from the municipality of Xalatlaco. Other covariates included in the GLM, such as the sheep pen built with materials of metal grids and untreated wood, dirt and concrete floors, bed of straw, and the well water supply were also remained independently associated with infectious abortion. Approximately 80% of those respondents did not wear gloves or masks to prevent the transmission of the abortifacient zoonotic microorganisms.

CONCLUSIONS

Sensitizing stakeholders on good agricultural practices could improve public health surveillance. Further studies on the effect of animal-human transmission in such a setting is worthwhile to further support the One Health initiative.

摘要

未标记

不明原因流产是大多数发展中国家所有农业系统中动物与人类之间疾病传播的主要原因,钩端螺旋体病、布鲁氏菌病和绵羊地方性流产是其重要因素。尽管这些疾病有明确的风险因素,但这些特征并不代表不同地区该病的流行情况。本研究基于人工神经网络方法和广义线性模型(GLM)预测母羊中多种微生物引起的不明原因流产负担。

方法

采用两阶段整群调查设计来估计流产病原体的血清流行率,并确定感染性流产的推定因素。

结果

总体血清流行率为70.7%,而[具体微生物名称1]属为55.2%,[具体微生物名称2]为21.9%,[具体微生物名称3]为7.4%。仅在0.87%的采样绵羊中检测到四种导致流产的微生物的血清学结果。最佳的广义线性模型是通过对来自哈拉特拉克科市海拔2600至2800米斜坡地区动物的哈德乔血清型和[具体微生物名称4]进行血清学检测而整合得出的。广义线性模型中包含的其他协变量,如用金属网格和未经处理的木材、泥土和混凝土地面、稻草床以及井水供应建造的羊圈,也与感染性流产独立相关。大约80%的受访者没有戴手套或口罩来预防流产性人畜共患病微生物的传播。

结论

提高利益相关者对良好农业实践的认识可以改善公共卫生监测。在这种情况下进一步研究动物与人之间传播的影响对于进一步支持“同一健康”倡议是值得的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ab4/10525082/038f4fbf91db/animals-13-02955-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验