Suppr超能文献

Effects of fatigue and recovery on electromyographic and isometric force- and relaxation-time characteristics of human skeletal muscle.

作者信息

Häkkinen K, Komi P V

出版信息

Eur J Appl Physiol Occup Physiol. 1986;55(6):588-96. doi: 10.1007/BF00423202.

Abstract

Effects of fatigue produced by a maintained 60% isometric loading on electromyographic and isometric force-time and relaxation-time characteristics of human skeletal muscle were studied in 21 males accustomed to strength training. Fatigue loading resulted in a slight but not significant change in the maximal integrated EMG of a maximal isometric contraction, and a large decrease (20.4 +/- 6.3%, p less than 0.001) in maximal force. Fatigue loading increased (p less than 0.05-0.01) neural activation of the muscles during rapidly produced submaximal isometric forces, but had a considerable adverse effect (p less than 0.001) on the corresponding force-time characteristics. Correlations between the relative changes after fatigue in the IEMG/force ratio at the maximal force level, and in the IEMG/force ratios of the early phases of the force-time curve were not significant, but gradually became significant (p less than 0.01) at higher force levels. The average IEMG of the muscles in the relaxation phase of contraction remained unaltered by fatigue, while a marked deleterious change in the relaxation-time variables (p less than 0.001) occurred concomitantly. During the subsequent 3 min rest period considerable (12.1 +/- 7.0%, p less than 0.001) recovery was noted in the maximal force, with smaller (insignificant or p less than 0.05-0.01) changes in the force-time and relaxation-time variables, while the average IEMG of force production decreased (p less than 0.01-0.001). The present findings suggest that fatigue leading to a worsening in force-time, in maximal force and in the relaxation-time parts of a maximal isometric contraction might take place primarily in the contractile processes.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验