Giraldo Lina Dávila R, Baez Paula Villanueva X, Forero Cristian Zambrano J, Arango Walter Murillo
Grupo de Investigación en Productos Naturales-GIPRONUT, Departamento de Química, Universidad del Tolima, Ibagué, Colombia.
Laboratorio Socio-jurídico en Creación e Innovación - IusLab, Departamento de Ciencias Sociales y Jurídicas, Universidad del Tolima, Ibagué, Colombia.
Bio Protoc. 2023 Oct 5;13(19):e4841. doi: 10.21769/BioProtoc.4841.
Macrofungi, also known as mushrooms, can produce various bioactive compounds, including exopolysaccharides (EPS) with distinct biological properties and subsequent industrial applications in the preparation of cosmetics, pharmaceuticals, and food products. EPS are extracellular polymers with diverse chemical compositions and physical properties secreted by macrofungi in the form of capsules or biofilms into the cellular medium. Submerged cultivation is an industrially implemented biotechnological technique used to produce a wide variety of fungal metabolites, which are of economic and social importance due to their food, pharmaceutical, and agronomic applications. It is a favorable technique for cultivating fungi because it requires little space, minimal labor, and low production costs. Moreover, it allows for control over environmental variables and nutrient supply, essential for the growth of the fungus. Although this technique has been widely applied to yeasts, there is limited knowledge regarding optimal growth conditions for filamentous fungi. Filamentous fungi exhibit different behavior compared to yeast, primarily due to differences in cell morphology, reproductive forms, and the type of aggregates generated during submerged fermentation. Furthermore, various growing conditions can affect the production yield of metabolites, necessitating the development of new knowledge to scale up metabolite production from filamentous fungi. This protocol implements the following culture conditions: an inoculum of three agar discs with mycelium, agitation at 150 rpm, a temperature of 28 °C, an incubation time of 72 h, and a carbon source concentration of 40 g/L. These EPS are precipitated using polar solvents such as water, ethanol, and isopropanol and solubilized using water or alkaline solutions. This protocol details the production procedure of EPS using submerged culture; the conditions and culture medium used are described. A detailed description of the extraction is performed, from neutralization to lyophilization. The concentrations and conditions necessary for solubilization are also described. Key features • Production and extraction of EPS from submerged cultures of mycelial forms of macrofungi. • Modification of the method described by Fariña et al. (2001), extending its application to submerged cultures of mycelial forms of the macrofungi. • Determination of EPS production parameters in submerged cultures of mycelial forms of macrofungi. • EPS solubilization using NaOH (0.1 N). Graphical overview.
大型真菌,也被称为蘑菇,能够产生多种生物活性化合物,包括具有独特生物学特性的胞外多糖(EPS),以及随后在化妆品、药品和食品制备中的工业应用。EPS是大型真菌以胶囊或生物膜的形式分泌到细胞培养基中的具有多种化学组成和物理性质的细胞外聚合物。深层培养是一种工业上应用的生物技术,用于生产多种真菌代谢产物,由于其在食品、制药和农艺方面的应用,这些代谢产物具有经济和社会重要性。这是一种有利于培养真菌的技术,因为它所需空间小、劳动力最少且生产成本低。此外,它允许控制环境变量和营养供应,这对真菌的生长至关重要。尽管该技术已广泛应用于酵母,但关于丝状真菌的最佳生长条件的知识有限。丝状真菌与酵母相比表现出不同的行为,主要是由于细胞形态、繁殖形式以及深层发酵过程中产生的聚集体类型的差异。此外,各种生长条件会影响代谢产物的产量,因此需要开发新知识以扩大丝状真菌代谢产物的生产规模。本方案采用以下培养条件:接种三个带有菌丝体的琼脂圆盘,搅拌速度为150转/分钟,温度为28℃,培养时间为72小时,碳源浓度为40克/升。这些EPS使用水、乙醇和异丙醇等极性溶剂沉淀,并用水或碱性溶液溶解。本方案详细介绍了使用深层培养生产EPS的过程;描述了所用的条件和培养基。对从中和到冻干的提取过程进行了详细描述。还描述了溶解所需的浓度和条件。关键特性• 从大型真菌菌丝体形式的深层培养物中生产和提取EPS。• 修改了法里尼亚等人(2001年)描述的方法,将其应用扩展到大型真菌菌丝体形式的深层培养物。• 确定大型真菌菌丝体形式的深层培养物中EPS的生产参数。• 使用0.1N NaOH溶解EPS。图形概述。