Suppr超能文献

DermAI 1.0:一种用于皮肤病变图像多类分类的强大、通用且新颖的基于注意力集成的迁移学习范式。

DermAI 1.0: A Robust, Generalized, and Novel Attention-Enabled Ensemble-Based Transfer Learning Paradigm for Multiclass Classification of Skin Lesion Images.

作者信息

Sanga Prabhav, Singh Jaskaran, Dubey Arun Kumar, Khanna Narendra N, Laird John R, Faa Gavino, Singh Inder M, Tsoulfas Georgios, Kalra Mannudeep K, Teji Jagjit S, Al-Maini Mustafa, Rathore Vijay, Agarwal Vikas, Ahluwalia Puneet, Fouda Mostafa M, Saba Luca, Suri Jasjit S

机构信息

Department of Information Technology, Bharati Vidyapeeth's College of Engineering, New Delhi 110063, India.

Global Biomedical Technologies, Inc., Roseville, CA 95661, USA.

出版信息

Diagnostics (Basel). 2023 Oct 9;13(19):3159. doi: 10.3390/diagnostics13193159.

Abstract

Skin lesion classification plays a crucial role in dermatology, aiding in the early detection, diagnosis, and management of life-threatening malignant lesions. However, standalone transfer learning (TL) models failed to deliver optimal performance. In this study, we present an attention-enabled ensemble-based deep learning technique, a powerful, novel, and generalized method for extracting features for the classification of skin lesions. This technique holds significant promise in enhancing diagnostic accuracy by using seven pre-trained TL models for classification. Six ensemble-based DL (EBDL) models were created using stacking, softmax voting, and weighted average techniques. Furthermore, we investigated the attention mechanism as an effective paradigm and created seven attention-enabled transfer learning (aeTL) models before branching out to construct three attention-enabled ensemble-based DL (aeEBDL) models to create a reliable, adaptive, and generalized paradigm. The mean accuracy of the TL models is 95.30%, and the use of an ensemble-based paradigm increased it by 4.22%, to 99.52%. The aeTL models' performance was superior to the TL models in accuracy by 3.01%, and aeEBDL models outperformed aeTL models by 1.29%. Statistical tests show significant p-value and Kappa coefficient along with a 99.6% reliability index for the aeEBDL models. The approach is highly effective and generalized for the classification of skin lesions.

摘要

皮肤病变分类在皮肤病学中起着至关重要的作用,有助于早期发现、诊断和处理危及生命的恶性病变。然而,单独的迁移学习(TL)模型未能提供最佳性能。在本研究中,我们提出了一种基于注意力机制的集成深度学习技术,这是一种强大、新颖且通用的方法,用于提取皮肤病变分类的特征。该技术通过使用七个预训练的TL模型进行分类,在提高诊断准确性方面具有巨大潜力。使用堆叠、softmax投票和加权平均技术创建了六个基于集成的深度学习(EBDL)模型。此外,我们将注意力机制作为一种有效范式进行研究,并在构建三个基于注意力机制的集成深度学习(aeEBDL)模型之前,创建了七个基于注意力机制的迁移学习(aeTL)模型,以创建一个可靠、自适应且通用的范式。TL模型的平均准确率为95.30%,使用基于集成的范式将其提高了4.22%,达到99.52%。aeTL模型的性能在准确率上比TL模型高出3.01%,aeEBDL模型比aeTL模型高出1.29%。统计测试显示,aeEBDL模型具有显著的p值和kappa系数以及99.6%的可靠性指数。该方法对于皮肤病变分类非常有效且具有通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18d6/10573070/c560e268c730/diagnostics-13-03159-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验