Suppr超能文献

基于 SEER 数据库分析和单中心验证的高级别神经内分泌宫颈癌个体化预后预测工具。

Personalized prognostic prediction tool for high-grade neuroendocrine cervical cancer: a SEER database analysis and single-center validation.

机构信息

Gynecological Department, Shanghai First Maternity and Infant Health Hospital, No. 2699 West Gao Ke Road, Pudong, Shanghai, China.

Clinical Research Unit, Shanghai First Maternity and Infant Health Hospital, Shanghai, China.

出版信息

J Cancer Res Clin Oncol. 2023 Dec;149(19):17395-17404. doi: 10.1007/s00432-023-05414-6. Epub 2023 Oct 18.

Abstract

PURPOSE

Cervical high-grade neuroendocrine carcinoma (CHGNEC) is a rare but highly aggressive cancer. The purpose of this study is to develop a prognostic nomogram that can accurately predict the outcomes for CHGNEC patients.

METHODS

We analyzed clinical data from the Surveillance, Epidemiology, and End Results (SEER) database of CHGNEC patients, including small-cell neuroendocrine carcinoma (SCNEC) and large-cell neuroendocrine carcinoma (LCNEC). We investigated patient characteristics and prognosis, and developed a prognostic nomogram model for cancer-specific survival in CHGNEC patients. External validation was conducted using real clinical cases from our hospital.

RESULTS

Our study included 306 patients from SEER database, with a mean age of 49.9 ± 15.5 years. Most of the patients had SCNEC (86.9%). Among them, 170 died from the disease, while 136 either survived or died from other causes. Our final predictive model identified age at diagnosis, stage 1 status, stage 4 status, T1, N0, and surgery of the primary site as independent prognostic factors for CHGNEC. We validated our model using a group of 16 CHGNEC patients who underwent surgery at our center. The external validation showed that the prognostic nomogram had excellent discriminative ability, with an area under the receiver operating characteristic curve (AUC) of 0.76 (95% CI 0.49-1.00) for the prediction of 3-year cancer-specific survival (CSS) and an AUC of 0.85 (95% CI 0.62-1.00) for the prediction of 5-years CSS. The random survival forest model achieved an AUC of 0.80 (95% CI 0.56-1.00) for 3-years CSS and 0.91 (95% CI 0.72-1.00) for 5-years CSS, indicating its adequacy in predicting outcomes for CHGNEC patients.

CONCLUSION

Our study provides an excellent nomogram for predicting the prognosis of CHGNEC patients. The prognostic nomogram can be a useful tool for clinicians in identifying high-risk patients and making personalized treatment decisions.

摘要

目的

宫颈高级别神经内分泌癌(CHGNEC)是一种罕见但高度侵袭性的癌症。本研究旨在开发一种能准确预测 CHGNEC 患者预后的列线图。

方法

我们分析了来自监测、流行病学和最终结果(SEER)数据库的 CHGNEC 患者的临床资料,包括小细胞神经内分泌癌(SCNEC)和大细胞神经内分泌癌(LCNEC)。我们研究了患者的特征和预后,并为 CHGNEC 患者的癌症特异性生存建立了列线图模型。外部验证使用了我们医院的真实临床病例。

结果

我们的研究纳入了来自 SEER 数据库的 306 例患者,平均年龄为 49.9±15.5 岁。大多数患者为 SCNEC(86.9%)。其中,170 例患者因该病死亡,而 136 例患者或因其他原因存活或死亡。我们最终的预测模型确定了诊断时的年龄、1 期状态、4 期状态、T1、N0 和原发部位的手术为 CHGNEC 的独立预后因素。我们使用在我们中心接受手术的 16 例 CHGNEC 患者的一组数据验证了我们的模型。外部验证表明,该列线图对预测 3 年癌症特异性生存(CSS)具有出色的判别能力,其受试者工作特征曲线下面积(AUC)为 0.76(95%CI 0.49-1.00),预测 5 年 CSS 的 AUC 为 0.85(95%CI 0.62-1.00)。随机生存森林模型对 3 年 CSS 的 AUC 为 0.80(95%CI 0.56-1.00),对 5 年 CSS 的 AUC 为 0.91(95%CI 0.72-1.00),表明其在预测 CHGNEC 患者的预后方面是充分的。

结论

本研究为预测 CHGNEC 患者的预后提供了一个优秀的列线图。该预后列线图可以作为临床医生识别高危患者和制定个体化治疗决策的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/973a/10657306/484db1d185a6/432_2023_5414_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验