Leeds Institute of Health Sciences, University of Leeds, Leeds, United Kingdom.
Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom.
JCO Clin Cancer Inform. 2023 Sep;7:e2300070. doi: 10.1200/CCI.23.00070.
This discussion paper outlines challenges and proposes solutions for successfully implementing prediction models that incorporate patient-reported outcomes (PROs) in cancer practice.
We organized a full-day multidisciplinary meeting of people with expertise in cancer care delivery, PRO collection, PRO use in prediction modeling, computing, implementation, and decision science. The discussions presented here focused on identifying challenges to the development, implementation and use of prediction models incorporating PROs, and suggesting possible solutions.
Specific challenges and solutions were identified across three broad areas. (1) Understanding decision making and implementation: necessitating multidisciplinary collaboration in the early stages and throughout; early stakeholder engagement to define the decision problem and ensure acceptability of PROs in prediction; understanding patient/clinician interpretation of PRO predictions and uncertainty to optimize prediction impact; striving for model integration into existing electronic health records; and early regulatory alignment. (2) Recognizing the limitations to PRO collection and their impact on prediction: incorporating validated, clinically important PROs to maximize model generalizability and clinical engagement; and minimizing missing PRO data (resulting from both structural digital exclusion and time-varying factors) to avoid exacerbating existing inequalities. (3) Statistical and modeling challenges: incorporating statistical methods to address missing data; ensuring predictive modeling recognizes complex causal relationships; and considering temporal and geographic recalibration so that model predictions reflect the relevant population.
Developing and implementing PRO-based prediction models in cancer care requires extensive multidisciplinary working from the earliest stages, recognition of implementation challenges because of PRO collection and model presentation, and robust statistical methods to manage missing data, causality, and calibration. Prediction models incorporating PROs should be viewed as complex interventions, with their development and impact assessment carried out to reflect this.
本讨论文件概述了在癌症实践中成功实施纳入患者报告结局(PROs)的预测模型所面临的挑战,并提出了相应的解决方案。
我们组织了一次为期一整天的多学科会议,参会人员均为癌症护理提供、PRO 收集、PRO 在预测模型中应用、计算、实施和决策科学等方面的专家。本文讨论的重点是确定纳入 PRO 的预测模型在开发、实施和应用中所面临的挑战,并提出可能的解决方案。
在三个广泛的领域中确定了具体的挑战和解决方案。(1)理解决策制定和实施:需要在早期阶段以及整个过程中进行多学科合作;早期利益相关者参与,以定义决策问题并确保 PRO 在预测中的可接受性;了解患者/临床医生对 PRO 预测和不确定性的解释,以优化预测效果;努力将模型整合到现有的电子健康记录中;并尽早与监管机构达成一致。(2)认识到 PRO 收集的局限性及其对预测的影响:纳入经过验证的、具有临床重要性的 PRO,以最大限度地提高模型的通用性和临床参与度;并尽量减少 PRO 数据的缺失(由于结构性数字排除和时变因素导致),以避免加剧现有的不平等。(3)统计和建模挑战:纳入统计方法来解决缺失数据问题;确保预测建模能够识别复杂的因果关系;并考虑时间和地理重新校准,以使模型预测反映相关人群。
在癌症护理中开发和实施基于 PRO 的预测模型需要从早期阶段就进行广泛的多学科合作,认识到由于 PRO 收集和模型呈现而带来的实施挑战,以及采用稳健的统计方法来处理缺失数据、因果关系和校准问题。纳入 PRO 的预测模型应被视为复杂干预措施,其开发和影响评估应反映这一点。