文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于石墨烯及其衍生物的电化学传感器在癌症诊断中的策略与应用。

Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis.

机构信息

Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.

Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province & Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China.

出版信息

Molecules. 2023 Sep 20;28(18):6719. doi: 10.3390/molecules28186719.


DOI:10.3390/molecules28186719
PMID:37764496
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10536827/
Abstract

Graphene is an emerging nanomaterial increasingly being used in electrochemical biosensing applications owing to its high surface area, excellent conductivity, ease of functionalization, and superior electrocatalytic properties compared to other carbon-based electrodes and nanomaterials, enabling faster electron transfer kinetics and higher sensitivity. Graphene electrochemical biosensors may have the potential to enable the rapid, sensitive, and low-cost detection of cancer biomarkers. This paper reviews early-stage research and proof-of-concept studies on the development of graphene electrochemical biosensors for potential future cancer diagnostic applications. Various graphene synthesis methods are outlined along with common functionalization approaches using polymers, biomolecules, nanomaterials, and synthetic chemistry to facilitate the immobilization of recognition elements and improve performance. Major sensor configurations including graphene field-effect transistors, graphene modified electrodes and nanocomposites, and 3D graphene networks are highlighted along with their principles of operation, advantages, and biosensing capabilities. Strategies for the immobilization of biorecognition elements like antibodies, aptamers, peptides, and DNA/RNA probes onto graphene platforms to impart target specificity are summarized. The use of nanomaterial labels, hybrid nanocomposites with graphene, and chemical modification for signal enhancement are also discussed. Examples are provided to illustrate applications for the sensitive electrochemical detection of a broad range of cancer biomarkers including proteins, circulating tumor cells, DNA mutations, non-coding RNAs like miRNA, metabolites, and glycoproteins. Current challenges and future opportunities are elucidated to guide ongoing efforts towards transitioning graphene biosensors from promising research lab tools into mainstream clinical practice. Continued research addressing issues with reproducibility, stability, selectivity, integration, clinical validation, and regulatory approval could enable wider adoption. Overall, graphene electrochemical biosensors present powerful and versatile platforms for cancer diagnosis at the point of care.

摘要

石墨烯是一种新兴的纳米材料,由于其比其他基于碳的电极和纳米材料具有更高的表面积、优异的导电性、易于功能化以及卓越的电催化性能,与其他基于碳的电极和纳米材料相比,能够实现更快的电子转移动力学和更高的灵敏度,因此越来越多地被用于电化学生物传感应用。石墨烯电化学生物传感器有可能实现癌症生物标志物的快速、灵敏和低成本检测。本文综述了早期关于开发用于潜在未来癌症诊断应用的石墨烯电化学生物传感器的研究和概念验证研究。概述了各种石墨烯合成方法以及常用的功能化方法,包括聚合物、生物分子、纳米材料和合成化学,以促进识别元件的固定化并提高性能。重点介绍了主要的传感器配置,包括石墨烯场效应晶体管、石墨烯修饰电极和纳米复合材料以及 3D 石墨烯网络,以及它们的工作原理、优点和生物传感能力。总结了将生物识别元件(如抗体、适体、肽和 DNA/RNA 探针)固定在石墨烯平台上以赋予靶向特异性的策略。还讨论了纳米材料标记物、与石墨烯的混合纳米复合材料以及化学修饰用于信号增强的策略。提供了实例来说明用于广泛的癌症生物标志物(包括蛋白质、循环肿瘤细胞、DNA 突变、非编码 RNA 如 miRNA、代谢物和糖蛋白)的敏感电化学检测的应用。阐明了当前的挑战和未来的机遇,以指导将石墨烯生物传感器从有前途的研究实验室工具过渡到主流临床实践的持续努力。解决可重复性、稳定性、选择性、集成、临床验证和监管批准等问题的持续研究可以促进更广泛的采用。总体而言,石墨烯电化学生物传感器为即时护理点的癌症诊断提供了强大而多功能的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/bee946199231/molecules-28-06719-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/ad9493c913c6/molecules-28-06719-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/cd187772c958/molecules-28-06719-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/dbd760c54f8b/molecules-28-06719-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/33c50ddab9b9/molecules-28-06719-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/a6640312b3fb/molecules-28-06719-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/ca5fac93d749/molecules-28-06719-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/bbdb3a2b834e/molecules-28-06719-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/8db5e40f5d2d/molecules-28-06719-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/28066af308b8/molecules-28-06719-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/bee946199231/molecules-28-06719-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/ad9493c913c6/molecules-28-06719-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/cd187772c958/molecules-28-06719-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/dbd760c54f8b/molecules-28-06719-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/33c50ddab9b9/molecules-28-06719-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/a6640312b3fb/molecules-28-06719-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/ca5fac93d749/molecules-28-06719-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/bbdb3a2b834e/molecules-28-06719-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/8db5e40f5d2d/molecules-28-06719-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/28066af308b8/molecules-28-06719-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84d5/10536827/bee946199231/molecules-28-06719-g010.jpg

相似文献

[1]
Strategies and Applications of Graphene and Its Derivatives-Based Electrochemical Sensors in Cancer Diagnosis.

Molecules. 2023-9-20

[2]
A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors.

RSC Adv. 2019-3-18

[3]
Properties and Applications of Graphene and Its Derivatives in Biosensors for Cancer Detection: A Comprehensive Review.

Biosensors (Basel). 2022-4-24

[4]
2D graphene-based advanced nanoarchitectonics for electrochemical biosensors: Applications in cancer biomarker detection.

Biosens Bioelectron. 2024-4-15

[5]
Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers.

Biosens Bioelectron. 2019-1-29

[6]
Recent Progress in Nanomaterial-Based Electrochemical Biosensors for Cancer Biomarkers: A Review.

Molecules. 2017-6-24

[7]
Applications of graphene-based electrochemical and optical biosensors in early detection of cancer biomarkers.

Colloids Surf B Biointerfaces. 2022-4

[8]
Functional Ionic Liquids Decorated Carbon Hybrid Nanomaterials for the Electrochemical Biosensors.

Biosensors (Basel). 2021-10-23

[9]
Carbon Nanocomposites-based Electrochemical Sensors and Biosensors for Biomedical Diagnostics.

Curr Med Chem. 2024

[10]
A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials.

Mikrochim Acta. 2019-11-13

引用本文的文献

[1]
Advancing the potential of nanoparticles for cancer detection and precision therapeutics.

Med Oncol. 2025-6-4

[2]
Smart Dust for Chemical Mapping.

Adv Mater. 2025-5

[3]
Cashew Nut Shell Waste Derived Graphene Oxide.

Molecules. 2024-9-3

[4]
The Advancing Role of Nanocomposites in Cancer Diagnosis and Treatment.

Int J Nanomedicine. 2024

[5]
Emerging Biohybrids of Aptamer-Based Nano-Biosensing Technologies for Effective Early Cancer Detection.

Mol Diagn Ther. 2024-7

[6]
Leveraging electrochemical sensors to improve efficiency of cancer detection.

World J Clin Oncol. 2024-3-24

[7]
Graphene Oxide (GO) Layered Bioconjugates: An Effective Strategy for Delivering p53 Gene for Adenocarcinoma.

Recent Pat Nanotechnol. 2025

[8]
Recent Trends in Chemical Sensors for Detecting Toxic Materials.

Sensors (Basel). 2024-1-10

[9]
Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing.

Biosensors (Basel). 2023-11-8

本文引用的文献

[1]
Graphene-based field-effect transistor biosensors for the rapid detection and analysis of viruses: A perspective in view of COVID-19.

Carbon Trends. 2021-1

[2]
One-pot wet-chemical fabrication of 3D urchin-like core-shell Au@PdCu nanocrystals for electrochemical breast cancer immunoassay.

Mikrochim Acta. 2023-8-15

[3]
Calf thymus ds-DNA intercalation with pendimethalin herbicide at the surface of ZIF-8/Co/rGO/CN/ds-DNA/SPCE; A bio-sensing approach for pendimethalin quantification confirmed by molecular docking study.

Chemosphere. 2023-8

[4]
An Ultrasensitive miRNA-Based Genosensor for Detection of MicroRNA 21 in Gastric Cancer Cells Based on Functional Signal Amplifier and Synthesized Perovskite-Graphene Oxide and AuNPs.

Biosensors (Basel). 2023-1-22

[5]
State-of-art advances on removal, degradation and electrochemical monitoring of 4-aminophenol pollutants in real samples: A review.

Environ Res. 2023-4-1

[6]
Graphene-Based Electrochemical Biosensors for Breast Cancer Detection.

Biosensors (Basel). 2023-1-3

[7]
Electrochemically Exfoliated Graphene Quantum Dots Based Biosensor for CD44 Breast Cancer Biomarker.

Biosensors (Basel). 2022-11-3

[8]
Electrochemical biosensors for analysis of DNA point mutations in cancer research.

Anal Bioanal Chem. 2023-3

[9]
Disposable Amperometric Label-Free Immunosensor on Chitosan-Graphene-Modified Patterned ITO Electrodes for Prostate Specific Antigen.

Molecules. 2022-9-11

[10]
Lactate biosensing based on covalent immobilization of lactate oxidase onto chevron-like graphene nanoribbons via diazotization-coupling reaction.

Anal Chim Acta. 2022-5-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索