Suppr超能文献

基于人工智能的冠状动脉 CT 血管造影与定量冠状动脉血管造影的冠状动脉狭窄定量评估。

Artificial Intelligence-based Coronary Stenosis Quantification at Coronary CT Angiography versus Quantitative Coronary Angiography.

机构信息

From the Department of Medicine and Radiology, University of British Columbia, Vancouver, British Columbia, Canada (J.D., J.A.L., P.B., G.T.); Cardiovascular Translational Laboratory, Centre for Heart Lung Innovation & Providence Research, Vancouver, British Columbia, Canada (S.S.); HeartFlow, Mountain View, Calif (P.M., N.N., S.M.); Centre for Heart Valve Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada (D.M., J.S.); Interventional Cardiology Department, Ramsay Générale de Santé, Institut Cardiovasculaire Paris Sud, Massy, France (M.A.); OLV Clinic, Cardiovascular Center Aalst, Aalst, Belgium (C.C., B.d.B.); and Department of Cardiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland (O.M., G.T.).

出版信息

Radiol Cardiothorac Imaging. 2023 Dec;5(6):e230124. doi: 10.1148/ryct.230124.

Abstract

Purpose To evaluate the performance of a new artificial intelligence (AI)-based tool by comparing the quantified stenosis severity at coronary CT angiography (CCTA) with a reference standard derived from invasive quantitative coronary angiography (QCA). Materials and Methods This secondary, post hoc analysis included 120 participants (mean age, 59.7 years ± 10.8 [SD]; 73 [60.8%] men, 47 [39.2%] women) from three large clinical trials (AFFECTS, P3, REFINE) who underwent CCTA and invasive coronary angiography with QCA. Quantitative analysis of coronary stenosis severity at CCTA was performed using an AI-based coronary stenosis quantification (AI-CSQ) software service. Blinded comparison between QCA and AI-CSQ was measured on a per-vessel and per-patient basis. Results The per-vessel AI-CSQ diagnostic sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 80%, 88%, 86%, 65%, and 94%, respectively, for diameter stenosis (DS) 50% or greater; and 78%, 92%, 91%, 47%, and 98%, respectively, for DS 70% or greater. The areas under the receiver operating characteristic curve (AUCs) to predict DS of 50% or greater and 70% or greater on a per-vessel basis were 0.92 (95% CI: 0.88, 0.95; < .001) and 0.93 (95% CI: 0.89, 0.97; < .001), respectively. The AUCs to predict DS of 50% or greater and 70% or greater on a per-patient basis were 0.93 (95% CI: 0.88, 0.97; < .001) and 0.88 (95% CI: 0.81, 0.94; < .001), respectively. Conclusion AI-CSQ at CCTA demonstrated a high diagnostic performance compared with QCA both on a per-patient and per-vessel basis, with high sensitivity for stenosis detection. CT Angiography, Cardiac, Coronary Arteries Published under a CC BY 4.0 license.

摘要

目的

通过与源自有创性定量冠状动脉造影(QCA)的参考标准比较,评估一种新的基于人工智能(AI)的工具的性能,以量化冠状动脉 CT 血管造影(CCTA)中的狭窄严重程度。

材料与方法

本项次级、事后分析纳入了来自三项大型临床试验(AFFECTS、P3、REFINE)的 120 名参与者(平均年龄 59.7 岁±10.8[标准差];73[60.8%]名男性,47[39.2%]名女性),这些患者均接受了 CCTA 和有创性冠状动脉造影及 QCA。使用基于 AI 的冠状动脉狭窄定量(AI-CSQ)软件服务对 CCTA 中的冠状动脉狭窄严重程度进行定量分析。基于血管和基于患者的 QCA 与 AI-CSQ 之间的盲法比较。

结果

基于血管的 AI-CSQ 对直径狭窄(DS)≥50%的诊断敏感度、特异度、准确度、阳性预测值和阴性预测值分别为 80%、88%、86%、65%和 94%;对 DS≥70%的分别为 78%、92%、91%、47%和 98%。基于血管的 DS≥50%和≥70%的受试者工作特征曲线(ROC)下面积(AUC)分别为 0.92(95%可信区间:0.88,0.95;<0.001)和 0.93(95%可信区间:0.89,0.97;<0.001)。基于患者的 DS≥50%和≥70%的 AUC 分别为 0.93(95%可信区间:0.88,0.97;<0.001)和 0.88(95%可信区间:0.81,0.94;<0.001)。

结论

与 QCA 相比,基于 CCTA 的 AI-CSQ 在基于患者和基于血管的测量中均具有较高的诊断性能,且对狭窄检测具有较高的敏感度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验