From the Department of Medicine and Radiology, University of British Columbia, Vancouver, British Columbia, Canada (J.D., J.A.L., P.B., G.T.); Cardiovascular Translational Laboratory, Centre for Heart Lung Innovation & Providence Research, Vancouver, British Columbia, Canada (S.S.); HeartFlow, Mountain View, Calif (P.M., N.N., S.M.); Centre for Heart Valve Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada (D.M., J.S.); Interventional Cardiology Department, Ramsay Générale de Santé, Institut Cardiovasculaire Paris Sud, Massy, France (M.A.); OLV Clinic, Cardiovascular Center Aalst, Aalst, Belgium (C.C., B.d.B.); and Department of Cardiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland (O.M., G.T.).
Radiol Cardiothorac Imaging. 2023 Dec;5(6):e230124. doi: 10.1148/ryct.230124.
Purpose To evaluate the performance of a new artificial intelligence (AI)-based tool by comparing the quantified stenosis severity at coronary CT angiography (CCTA) with a reference standard derived from invasive quantitative coronary angiography (QCA). Materials and Methods This secondary, post hoc analysis included 120 participants (mean age, 59.7 years ± 10.8 [SD]; 73 [60.8%] men, 47 [39.2%] women) from three large clinical trials (AFFECTS, P3, REFINE) who underwent CCTA and invasive coronary angiography with QCA. Quantitative analysis of coronary stenosis severity at CCTA was performed using an AI-based coronary stenosis quantification (AI-CSQ) software service. Blinded comparison between QCA and AI-CSQ was measured on a per-vessel and per-patient basis. Results The per-vessel AI-CSQ diagnostic sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were 80%, 88%, 86%, 65%, and 94%, respectively, for diameter stenosis (DS) 50% or greater; and 78%, 92%, 91%, 47%, and 98%, respectively, for DS 70% or greater. The areas under the receiver operating characteristic curve (AUCs) to predict DS of 50% or greater and 70% or greater on a per-vessel basis were 0.92 (95% CI: 0.88, 0.95; < .001) and 0.93 (95% CI: 0.89, 0.97; < .001), respectively. The AUCs to predict DS of 50% or greater and 70% or greater on a per-patient basis were 0.93 (95% CI: 0.88, 0.97; < .001) and 0.88 (95% CI: 0.81, 0.94; < .001), respectively. Conclusion AI-CSQ at CCTA demonstrated a high diagnostic performance compared with QCA both on a per-patient and per-vessel basis, with high sensitivity for stenosis detection. CT Angiography, Cardiac, Coronary Arteries Published under a CC BY 4.0 license.
通过与源自有创性定量冠状动脉造影(QCA)的参考标准比较,评估一种新的基于人工智能(AI)的工具的性能,以量化冠状动脉 CT 血管造影(CCTA)中的狭窄严重程度。
本项次级、事后分析纳入了来自三项大型临床试验(AFFECTS、P3、REFINE)的 120 名参与者(平均年龄 59.7 岁±10.8[标准差];73[60.8%]名男性,47[39.2%]名女性),这些患者均接受了 CCTA 和有创性冠状动脉造影及 QCA。使用基于 AI 的冠状动脉狭窄定量(AI-CSQ)软件服务对 CCTA 中的冠状动脉狭窄严重程度进行定量分析。基于血管和基于患者的 QCA 与 AI-CSQ 之间的盲法比较。
基于血管的 AI-CSQ 对直径狭窄(DS)≥50%的诊断敏感度、特异度、准确度、阳性预测值和阴性预测值分别为 80%、88%、86%、65%和 94%;对 DS≥70%的分别为 78%、92%、91%、47%和 98%。基于血管的 DS≥50%和≥70%的受试者工作特征曲线(ROC)下面积(AUC)分别为 0.92(95%可信区间:0.88,0.95;<0.001)和 0.93(95%可信区间:0.89,0.97;<0.001)。基于患者的 DS≥50%和≥70%的 AUC 分别为 0.93(95%可信区间:0.88,0.97;<0.001)和 0.88(95%可信区间:0.81,0.94;<0.001)。
与 QCA 相比,基于 CCTA 的 AI-CSQ 在基于患者和基于血管的测量中均具有较高的诊断性能,且对狭窄检测具有较高的敏感度。