Suppr超能文献

氢化钙钛矿镍酸盐忆阻器器件的红外纳米成像

Infrared Nanoimaging of Hydrogenated Perovskite Nickelate Memristive Devices.

作者信息

Gamage Sampath, Manna Sukriti, Zajac Marc, Hancock Steven, Wang Qi, Singh Sarabpreet, Ghafariasl Mahdi, Yao Kun, Tiwald Tom E, Park Tae Joon, Landau David P, Wen Haidan, Sankaranarayanan Subramanian K R S, Darancet Pierre, Ramanathan Shriram, Abate Yohannes

机构信息

Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United States.

Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.

出版信息

ACS Nano. 2024 Jan 23;18(3):2105-2116. doi: 10.1021/acsnano.3c09281. Epub 2024 Jan 10.

Abstract

Solid-state devices made from correlated oxides, such as perovskite nickelates, are promising for neuromorphic computing by mimicking biological synaptic function. However, comprehending dopant action at the nanoscale poses a formidable challenge to understanding the elementary mechanisms involved. Here, we perform infrared nanoimaging of hydrogen-doped correlated perovskite, neodymium nickel oxide (H-NdNiO, H-NNO), devices and reveal how an applied field perturbs dopant distribution at the nanoscale. This perturbation leads to stripe phases of varying conductivity perpendicular to the applied field, which define the macroscale electrical characteristics of the devices. Hyperspectral nano-FTIR imaging in conjunction with density functional theory calculations unveils a real-space map of multiple vibrational states of H-NNO associated with OH stretching modes and their dependence on the dopant concentration. Moreover, the localization of excess charges induces an out-of-plane lattice expansion in NNO which was confirmed by X-ray diffraction and creates a strain that acts as a barrier against further diffusion. Our results and the techniques presented here hold great potential for the rapidly growing field of memristors and neuromorphic devices wherein nanoscale ion motion is fundamentally responsible for function.

摘要

由钙钛矿镍酸盐等相关氧化物制成的固态器件,通过模拟生物突触功能,在神经形态计算方面具有广阔前景。然而,理解纳米尺度下的掺杂剂作用对理解其中涉及的基本机制构成了巨大挑战。在此,我们对氢掺杂的相关钙钛矿钕镍氧化物(H-NdNiO,H-NNO)器件进行了红外纳米成像,并揭示了外加电场如何在纳米尺度上扰乱掺杂剂分布。这种扰动导致了垂直于外加电场的具有不同电导率的条纹相,这些条纹相决定了器件的宏观电学特性。高光谱纳米傅里叶变换红外成像结合密度泛函理论计算揭示了与OH伸缩模式相关的H-NNO多种振动状态的实空间图谱及其对掺杂剂浓度的依赖性。此外,过量电荷的局域化在NNO中引起了面外晶格膨胀,这一点通过X射线衍射得到了证实,并产生了一种作为进一步扩散屏障的应变。我们的结果以及本文所展示的技术在忆阻器和神经形态器件这一快速发展的领域中具有巨大潜力,在该领域中,纳米尺度的离子运动从根本上决定了器件的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc67/10811663/16259fe92050/nn3c09281_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验