Suppr超能文献

一种量化个体和集体常识的框架。

A framework for quantifying individual and collective common sense.

机构信息

Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA 19104.

Operations, Information and Decisions Department, Wharton School, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

Proc Natl Acad Sci U S A. 2024 Jan 23;121(4):e2309535121. doi: 10.1073/pnas.2309535121. Epub 2024 Jan 16.

Abstract

The notion of common sense is invoked so frequently in contexts as diverse as everyday conversation, political debates, and evaluations of artificial intelligence that its meaning might be surmised to be unproblematic. Surprisingly, however, neither the intrinsic properties of common sense knowledge (what makes a claim commonsensical) nor the degree to which it is shared by people (its "commonness") have been characterized empirically. In this paper, we introduce an analytical framework for quantifying both these elements of common sense. First, we define the commonsensicality of individual claims and people in terms of the latter's propensity to agree on the former and their awareness of one another's agreement. Second, we formalize the commonness of common sense as a clique detection problem on a bipartite belief graph of people and claims, defining [Formula: see text] common sense as the fraction [Formula: see text] of claims shared by a fraction [Formula: see text] of people. Evaluating our framework on a dataset of [Formula: see text] raters evaluating [Formula: see text] diverse claims, we find that commonsensicality aligns most closely with plainly worded, fact-like statements about everyday physical reality. Psychometric attributes such as social perceptiveness influence individual common sense, but surprisingly demographic factors such as age or gender do not. Finally, we find that collective common sense is rare: At most, a small fraction [Formula: see text] of people agree on more than a small fraction [Formula: see text] of claims. Together, these results undercut universalistic beliefs about common sense and raise questions about its variability that are relevant both to human and artificial intelligence.

摘要

常识这个概念在日常对话、政治辩论和人工智能评估等各种语境中频繁出现,以至于人们可能认为它的含义是不成问题的。然而,令人惊讶的是,常识知识的内在属性(是什么使一个主张具有常识性)以及人们对其的认同程度(其“普遍性”)都没有得到经验上的描述。在本文中,我们引入了一个分析框架,用于量化常识的这两个要素。首先,我们根据人们对前者的认同倾向以及他们对彼此认同的意识,来定义个人主张和人们的常识性。其次,我们将常识的普遍性形式化为人们和主张之间的二分信念图上的团检测问题,将[Formula: see text]常识定义为被[Formula: see text]的人们所共享的[Formula: see text]主张的分数。在一个由[Formula: see text]个评估者评估[Formula: see text]个不同主张的数据集上评估我们的框架,我们发现常识性与关于日常物理现实的简单措辞、事实性陈述最相符。心理计量属性,如社交感知能力,会影响个人的常识,但令人惊讶的是,年龄或性别等人口统计学因素并没有影响。最后,我们发现集体常识很少见:最多只有一小部分[Formula: see text]的人会对超过一小部分[Formula: see text]的主张达成共识。这些结果共同削弱了对常识的普遍主义信念,并提出了与人类和人工智能都相关的关于其可变性的问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a0/10823256/86c43ec72bbd/pnas.2309535121fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验