Suppr超能文献

用于自动超声心动图应变测量的深度学习算法的外部验证

External validation of a deep learning algorithm for automated echocardiographic strain measurements.

作者信息

Myhre Peder L, Hung Chung-Lieh, Frost Matthew J, Jiang Zhubo, Ouwerkerk Wouter, Teramoto Kanako, Svedlund Sara, Saraste Antti, Hage Camilla, Tan Ru-San, Beussink-Nelson Lauren, Fermer Maria L, Gan Li-Ming, Hummel Yoran M, Lund Lars H, Shah Sanjiv J, Lam Carolyn S P, Tromp Jasper

机构信息

Division of Medicine, Akershus University Hospital, Lørenskog, Norway.

K.G. Jebsen Center of Cardiac Biomarkers, University of Oslo, Oslo, Norway.

出版信息

Eur Heart J Digit Health. 2023 Nov 20;5(1):60-68. doi: 10.1093/ehjdh/ztad072. eCollection 2024 Jan.

Abstract

AIMS

Echocardiographic strain imaging reflects myocardial deformation and is a sensitive measure of cardiac function and wall-motion abnormalities. Deep learning (DL) algorithms could automate the interpretation of echocardiographic strain imaging.

METHODS AND RESULTS

We developed and trained an automated DL-based algorithm for left ventricular (LV) strain measurements in an internal dataset. Global longitudinal strain (GLS) was validated externally in (i) a Taiwanese cohort of participants with and without heart failure (HF), (ii) a core-lab measured dataset from the multinational prevalence of microvascular dysfunction-HF and preserved ejection fraction (PROMIS-HFpEF) study, and regional strain in (iii) the HMC-QU-MI study of patients with suspected myocardial infarction. Outcomes included measures of agreement [bias, mean absolute difference (MAD), root-mean-squared-error (RMSE), and Pearson's correlation (R)] and area under the curve (AUC) to identify HF and regional wall-motion abnormalities. The DL workflow successfully analysed 3741 (89%) studies in the Taiwanese cohort, 176 (96%) in PROMIS-HFpEF, and 158 (98%) in HMC-QU-MI. Automated GLS showed good agreement with manual measurements (mean ± SD): -18.9 ± 4.5% vs. -18.2 ± 4.4%, respectively, bias 0.68 ± 2.52%, MAD 2.0 ± 1.67, RMSE = 2.61, R = 0.84 in the Taiwanese cohort; and -15.4 ± 4.1% vs. -15.9 ± 3.6%, respectively, bias -0.65 ± 2.71%, MAD 2.19 ± 1.71, RMSE = 2.78, R = 0.76 in PROMIS-HFpEF. In the Taiwanese cohort, automated GLS accurately identified patients with HF (AUC = 0.89 for total HF and AUC = 0.98 for HF with reduced ejection fraction). In HMC-QU-MI, automated regional strain identified regional wall-motion abnormalities with an average AUC = 0.80.

CONCLUSION

DL algorithms can interpret echocardiographic strain images with similar accuracy as conventional measurements. These results highlight the potential of DL algorithms to democratize the use of cardiac strain measurements and reduce time-spent and costs for echo labs globally.

摘要

目的

超声心动图应变成像反映心肌变形,是心脏功能和室壁运动异常的敏感指标。深度学习(DL)算法可实现超声心动图应变成像解释的自动化。

方法与结果

我们在内部数据集上开发并训练了一种基于深度学习的左心室(LV)应变测量自动化算法。整体纵向应变(GLS)在以下方面进行了外部验证:(i)台湾有或无心力衰竭(HF)参与者队列;(ii)多中心微血管功能障碍-HF和射血分数保留(PROMIS-HFpEF)研究的核心实验室测量数据集;以及(iii)疑似心肌梗死患者的HMC-QU-MI研究中的局部应变。结果包括一致性测量指标[偏差、平均绝对差(MAD)、均方根误差(RMSE)和皮尔逊相关系数(R)]以及用于识别HF和局部室壁运动异常的曲线下面积(AUC)。DL工作流程成功分析了台湾队列中的3741项(89%)研究、PROMIS-HFpEF中的176项(96%)研究以及HMC-QU-MI中的158项(98%)研究。自动化GLS与手动测量结果显示出良好的一致性(均值±标准差):台湾队列中分别为-18.9±4.5%和-18.2±4.4%,偏差0.68±2.52%,MAD 2.0±1.67,RMSE = 2.61,R = 0.84;PROMIS-HFpEF中分别为-15.4±4.1%和-15.9±3.6%,偏差-0.65±2.71%,MAD 2.19±1.71,RMSE = 2.78,R = 0.76。在台湾队列中,自动化GLS能准确识别HF患者(总HF的AUC = 0.89,射血分数降低的HF的AUC = 0.98)。在HMC-QU-MI中,自动化局部应变识别局部室壁运动异常的平均AUC = 0.80。

结论

DL算法能够以与传统测量相似的准确性解释超声心动图应变图像。这些结果凸显了DL算法在全球范围内普及心脏应变测量应用、减少超声心动图实验室的时间和成本方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd3f/10802824/ab2f38a416e5/ztad072_ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验