TDD-UNet:具有双解码器 UNet 的 Transformer 用于 COVID-19 病变分割。

TDD-UNet:Transformer with double decoder UNet for COVID-19 lesions segmentation.

机构信息

Computer School, University of South China, Hengyang 421001, China.

Affiliated Nanhua Hospital, University of South China, Hengyang 421001, China.

出版信息

Comput Biol Med. 2022 Dec;151(Pt A):106306. doi: 10.1016/j.compbiomed.2022.106306. Epub 2022 Nov 8.

Abstract

The outbreak of new coronary pneumonia has brought severe health risks to the world. Detection of COVID-19 based on the UNet network has attracted widespread attention in medical image segmentation. However, the traditional UNet model is challenging to capture the long-range dependence of the image due to the limitations of the convolution kernel with a fixed receptive field. The Transformer Encoder overcomes the long-range dependence problem. However, the Transformer-based segmentation approach cannot effectively capture the fine-grained details. We propose a transformer with a double decoder UNet for COVID-19 lesions segmentation to address this challenge, TDD-UNet. We introduce the multi-head self-attention of the Transformer to the UNet encoding layer to extract global context information. The dual decoder structure is used to improve the result of foreground segmentation by predicting the background and applying deep supervision. We performed quantitative analysis and comparison for our proposed method on four public datasets with different modalities, including CT and CXR, to demonstrate its effectiveness and generality in segmenting COVID-19 lesions. We also performed ablation studies on the COVID-19-CT-505 dataset to verify the effectiveness of the key components of our proposed model. The proposed TDD-UNet also achieves higher Dice and Jaccard mean scores and the lowest standard deviation compared to competitors. Our proposed method achieves better segmentation results than other state-of-the-art methods.

摘要

新型冠状肺炎的爆发给世界带来了严重的健康威胁。基于 UNet 网络的 COVID-19 检测在医学图像分割中受到了广泛关注。然而,传统的 UNet 模型由于卷积核具有固定感受野的限制,难以捕捉图像的长程依赖关系。Transformer 编码器克服了长程依赖问题。然而,基于 Transformer 的分割方法无法有效捕捉细粒度细节。我们提出了一种用于 COVID-19 病变分割的具有双解码器 UNet 的 Transformer,即 TDD-UNet。我们将 Transformer 的多头自注意力引入到 UNet 编码层中,以提取全局上下文信息。双解码器结构用于通过预测背景并应用深度监督来提高前景分割的结果。我们在包括 CT 和 CXR 在内的四个具有不同模态的公共数据集上对我们提出的方法进行了定量分析和比较,以证明其在分割 COVID-19 病变方面的有效性和通用性。我们还在 COVID-19-CT-505 数据集上进行了消融研究,以验证我们提出的模型的关键组件的有效性。与竞争对手相比,所提出的 TDD-UNet 还实现了更高的 Dice 和 Jaccard 均值得分和更低的标准差。我们提出的方法比其他最先进的方法实现了更好的分割结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d228/9664702/798c9ae24409/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索