文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application.

作者信息

Baranwal Anupriya, Polash Shakil Ahmed, Aralappanavar Vijay Kumar, Behera Bijay Kumar, Bansal Vipul, Shukla Ravi

机构信息

Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3000, Australia.

NanoBiosensor Laboratory, Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata 700120, West Bengal, India.

出版信息

Nanomaterials (Basel). 2024 Jan 23;14(3):244. doi: 10.3390/nano14030244.


DOI:10.3390/nano14030244
PMID:38334515
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10856890/
Abstract

A nanozyme is a nanoscale material having enzyme-like properties. It exhibits several superior properties, including low preparation cost, robust catalytic activity, and long-term storage at ambient temperatures. Moreover, high stability enables repetitive use in multiple catalytic reactions. Hence, it is considered a potential replacement for natural enzymes. Enormous research interest in nanozymes in the past two decades has made it imperative to look for better enzyme-mimicking materials for biomedical applications. Given this, research on metal-organic frameworks (MOFs) as a potential nanozyme material has gained momentum. MOFs are advanced hybrid materials made of inorganic metal ions and organic ligands. Their distinct composition, adaptable pore size, structural diversity, and ease in the tunability of physicochemical properties enable MOFs to mimic enzyme-like activities and act as promising nanozyme candidates. This review aims to discuss recent advances in the development of MOF-based nanozymes (MOF-NZs) and highlight their applications in the field of biomedicine. Firstly, different enzyme-mimetic activities exhibited by MOFs are discussed, and insights are given into various strategies to achieve them. Modification and functionalization strategies are deliberated to obtain MOF-NZs with enhanced catalytic activity. Subsequently, applications of MOF-NZs in the biosensing and therapeutics domain are discussed. Finally, the review is concluded by giving insights into the challenges encountered with MOF-NZs and possible directions to overcome them in the future. With this review, we aim to encourage consolidated efforts across enzyme engineering, nanotechnology, materials science, and biomedicine disciplines to inspire exciting innovations in this emerging yet promising field.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/1a7797c434b1/nanomaterials-14-00244-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/182e8457e832/nanomaterials-14-00244-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/bde3d0626e8b/nanomaterials-14-00244-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/8ed8fafa9317/nanomaterials-14-00244-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/0c5a941777c5/nanomaterials-14-00244-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/fc23d3121a51/nanomaterials-14-00244-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/137936de8685/nanomaterials-14-00244-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/cbd669cf82bc/nanomaterials-14-00244-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/50276effe3f2/nanomaterials-14-00244-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/ab6d48b03fb0/nanomaterials-14-00244-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/0305e69b034a/nanomaterials-14-00244-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/a904819d680a/nanomaterials-14-00244-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/dc3f7c87e1cc/nanomaterials-14-00244-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/1a7797c434b1/nanomaterials-14-00244-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/182e8457e832/nanomaterials-14-00244-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/bde3d0626e8b/nanomaterials-14-00244-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/8ed8fafa9317/nanomaterials-14-00244-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/0c5a941777c5/nanomaterials-14-00244-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/fc23d3121a51/nanomaterials-14-00244-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/137936de8685/nanomaterials-14-00244-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/cbd669cf82bc/nanomaterials-14-00244-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/50276effe3f2/nanomaterials-14-00244-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/ab6d48b03fb0/nanomaterials-14-00244-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/0305e69b034a/nanomaterials-14-00244-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/a904819d680a/nanomaterials-14-00244-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/dc3f7c87e1cc/nanomaterials-14-00244-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30b7/10856890/1a7797c434b1/nanomaterials-14-00244-g012.jpg

相似文献

[1]
Recent Progress and Prospect of Metal-Organic Framework-Based Nanozymes in Biomedical Application.

Nanomaterials (Basel). 2024-1-23

[2]
Metal-Organic Framework Derived Nanozymes in Biomedicine.

Acc Chem Res. 2020-7-21

[3]
Recent advances in MOF-based nanozymes: Synthesis, activities, and bioapplications.

Biosens Bioelectron. 2024-11-1

[4]
Recent progress of metal-organic framework-based nanozymes with oxidoreductase-like activity.

Analyst. 2024-2-26

[5]
Metal-organic framework based nanozymes: promising materials for biochemical analysis.

Chem Commun (Camb). 2020-9-29

[6]
Advances in the application of metal-organic framework nanozymes in colorimetric sensing of heavy metal ions.

Nanoscale. 2023-8-10

[7]
Nanozymes in Biomedical Applications: Innovations Originated From Metal-Organic Frameworks.

Adv Healthc Mater. 2025-3

[8]
Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy.

Biosens Bioelectron. 2019-5-7

[9]
Advancing stroke therapy: the potential of MOF-based nanozymes in biomedical applications.

Front Bioeng Biotechnol. 2024-5-9

[10]
Metal-organic frameworks for enzyme immobilization and nanozymes: A laccase-focused review.

Biotechnol Adv. 2024

引用本文的文献

[1]
Development and application of chiral separation technology based on chiral metal-organic frameworks.

J Pharm Anal. 2025-7

[2]
Nanomedicine in cardiovascular and cerebrovascular diseases: targeted nanozyme therapies and their clinical potential and current challenges.

J Nanobiotechnology. 2025-7-28

[3]
Recent Advances in Metal-Organic Framework-Based Nanozymes for Intelligent Microbial Biosensing: A Comprehensive Review of Biomedical and Environmental Applications.

Biosensors (Basel). 2025-7-7

[4]
Synzymes: The Future of Modern Enzyme Engineering.

Appl Biochem Biotechnol. 2025-7-5

[5]
Exploring Nucleic Acid Nanozymes: A New Frontier in Biosensor Development.

Biosensors (Basel). 2025-2-24

[6]
Smartphone-integrated colorimetric sensor for rapid detection of phenolic compounds based on the peroxidase-mimicking activity of copper/cerium-aspartic acid metal-organic framework.

Mikrochim Acta. 2025-1-3

[7]
Recent Advances in Nanozyme Sensors Based on Metal-Organic Frameworks and Covalent-Organic Frameworks.

Biosensors (Basel). 2024-10-23

[8]
Conducting polymer functionalized Cu-metal organic framework-based electrochemical immunosensor for rapid and sensitive quantitation of Escherichia coli O157:H7.

Mikrochim Acta. 2024-11-13

本文引用的文献

[1]
Two-mode sensing strategies based on tunable cobalt metal organic framework active sites to detect Hg.

J Hazard Mater. 2024-3-5

[2]
Metal-organic framework-modulated FeO composite au nanoparticles for antibacterial wound healing via synergistic peroxidase-like nanozymatic catalysis.

J Nanobiotechnology. 2023-11-15

[3]
Metal-Organic Framework-Supported Catalase Delivery for Enhanced Photodynamic Therapy via Hypoxia Mitigation.

ACS Appl Mater Interfaces. 2023-10-26

[4]
ATP-triggered, selective superoxide radical generating oxidase-mimetic cerium oxide nanozyme exhibiting efficient antibacterial activity at physiological pH.

Colloids Surf B Biointerfaces. 2023-11

[5]
Allosteric switch for electrochemical aptasensor toward heavy metals pollution of Lentinus edodes sensitized with porphyrinic metal-organic frameworks.

Anal Chim Acta. 2023-10-16

[6]
Amorphous copper(II)-cyanoimidazole frameworks as peroxidase mimics for hydrogen sulfide assay.

J Colloid Interface Sci. 2023-12-15

[7]
Aptamer tuned nanozyme activity of nickel-metal-organic framework for sensitive electrochemical aptasensing of tetracycline residue.

Food Chem. 2024-1-1

[8]
Advances in the application of metal-organic framework nanozymes in colorimetric sensing of heavy metal ions.

Nanoscale. 2023-8-10

[9]
Stimuli-responsive nanozymes for biomedical applications.

Biomater Sci. 2023-8-22

[10]
Bioinspired Cu-based metal-organic framework mimicking SOD for superoxide anion sensing and scavenging.

Talanta. 2023-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索