Suppr超能文献

利用谷歌趋势数据和机器学习方法预测加利福尼亚州的新冠病毒新发病例。

Predicting COVID-19 new cases in California with Google Trends data and a machine learning approach.

机构信息

Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, USA.

Department of Computer Science, University of Guilan, Rasht, Iran.

出版信息

Inform Health Soc Care. 2024 Jan 2;49(1):56-72. doi: 10.1080/17538157.2024.2315246. Epub 2024 Feb 14.

Abstract

BACKGROUND

Google Trends data can be a valuable source of information for health-related issues such as predicting infectious disease trends.

OBJECTIVES

To evaluate the accuracy of predicting COVID-19 new cases in California using Google Trends data, we develop and use a GMDH-type neural network model and compare its performance with a LTSM model.

METHODS

We predicted COVID-19 new cases using Google query data over three periods. Our first period covered March 1, 2020, to July 31, 2020, including the first peak of infection. We also estimated a model from October 1, 2020, to January 7, 2021, including the second wave of COVID-19 and avoiding possible biases from public interest in searching about the new pandemic. In addition, we extended our forecasting period from May 20, 2020, to January 31, 2021, to cover an extended period of time.

RESULTS

Our findings show that Google relative search volume (RSV) can be used to accurately predict new COVID-19 cases.  We find that among our Google relative search volume terms, "Fever," "COVID Testing," "Signs of COVID," "COVID Treatment," and "Shortness of Breath" increase model predictive accuracy.

CONCLUSIONS

Our findings highlight the value of using data sources providing real-time data, e.g., Google Trends, to detect trends in COVID-19 cases, in order to supplement and extend existing epidemiological models.

摘要

背景

Google Trends 数据可以为健康相关问题提供有价值的信息,例如预测传染病趋势。

目的

为了评估使用 Google Trends 数据预测加利福尼亚州 COVID-19 新病例的准确性,我们开发并使用了一种 GMDH 型神经网络模型,并将其性能与 LTSM 模型进行了比较。

方法

我们使用 Google 查询数据在三个时间段内预测 COVID-19 新病例。我们的第一个时间段涵盖 2020 年 3 月 1 日至 7 月 31 日,包括感染的第一个高峰。我们还根据 2020 年 10 月 1 日至 2021 年 1 月 7 日的数据建立了一个模型,包括 COVID-19 的第二波疫情,同时避免了公众对新疫情搜索的兴趣可能带来的偏差。此外,我们将预测时间段从 2020 年 5 月 20 日延长至 2021 年 1 月 31 日,以涵盖更长的时间段。

结果

我们的研究结果表明,Google 相对搜索量(RSV)可用于准确预测 COVID-19 新病例。我们发现,在我们的 Google 相对搜索量术语中,“发烧”、“COVID 测试”、“COVID 症状”、“COVID 治疗”和“呼吸急促”增加了模型的预测准确性。

结论

我们的研究结果强调了使用提供实时数据的数据源(例如 Google Trends)来检测 COVID-19 病例趋势的价值,以补充和扩展现有的流行病学模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验