International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
Biomaterials. 2024 Apr;306:122502. doi: 10.1016/j.biomaterials.2024.122502. Epub 2024 Feb 6.
Extracellular vesicles (EVs) from cultured cells or bodily fluids have been demonstrated to show therapeutic value following myocardial infarction. However, challenges in donor variation, EV generation and isolation methods, and material availability have hindered their therapeutic use. Here, we show that human clinical-grade platelet concentrates from a blood establishment can be used to rapidly generate high concentrations of high purity EVs from sero-converted platelet lysate (SCPL-EVs) with minimal processing, using size-exclusion chromatography. Processing removed serum carrier proteins, coagulation factors and complement proteins from the original platelet lysate and the resultant SCPL-EVs carried a range of trophic factors and multiple recognised cardioprotective miRNAs. As such, SCPL-EVs protected rodent and human cardiomyocytes from hypoxia/re-oxygenation injury and stimulated angiogenesis of human cardiac microvessel endothelial cells. In a mouse model of myocardial infarction with reperfusion, SCPL-EV delivery using echo-guided intracavitary percutaneous injection produced large improvements in cardiac function, reduced scar formation and promoted angiogenesis. Since platelet-based biomaterials are already widely used clinically, we believe that this therapy could be rapidly suitable for a human clinical trial.
从培养细胞或体液中提取的细胞外囊泡 (EVs) 在心肌梗死后显示出治疗价值。然而,供体变异、EV 生成和分离方法以及材料可用性方面的挑战阻碍了它们的治疗用途。在这里,我们展示了可以使用来自血清转化血小板裂解液 (SCPL-EVs) 的人临床级血小板浓缩物,使用尺寸排阻色谱法快速生成高浓度的高纯度 EV,处理过程去除了原始血小板裂解液中的血清载体蛋白、凝血因子和补体蛋白,所得的 SCPL-EVs 携带多种营养因子和多种公认的心脏保护 miRNA。因此,SCPL-EVs 可保护啮齿动物和人心肌细胞免受缺氧/再氧合损伤,并刺激人心肌微血管内皮细胞的血管生成。在伴有再灌注的心肌梗死小鼠模型中,使用回声引导的腔内经皮注射递送 SCPL-EV 可显著改善心功能、减少疤痕形成并促进血管生成。由于基于血小板的生物材料已经在临床上广泛使用,我们相信这种治疗方法可以很快适合进行人体临床试验。