Song Zhenyou, Wang Tengrui, Yang Hua, Kan Wang Hay, Chen Yuwei, Yu Qian, Wang Likuo, Zhang Yini, Dai Yiming, Chen Huaican, Yin Wen, Honda Takashi, Avdeev Maxim, Xu Henghui, Ma Jiwei, Huang Yunhui, Luo Wei
Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
Spallation Neutron Source Science Center, Dongguan, Guangdong, 523803, China.
Nat Commun. 2024 Feb 17;15(1):1481. doi: 10.1038/s41467-024-45864-1.
Stable solid electrolytes are essential to high-safety and high-energy-density lithium batteries, especially for applications with high-voltage cathodes. In such conditions, solid electrolytes may experience severe oxidation, decomposition, and deactivation during charging at high voltages, leading to inadequate cycling performance and even cell failure. Here, we address the high-voltage limitation of halide solid electrolytes by introducing local lattice distortion to confine the distribution of Cl, which effectively curbs kinetics of their oxidation. The confinement is realized by substituting In with multiple elements in LiInCl to give a high-entropy LiYErYbInZrCl. Meanwhile, the lattice distortion promotes longer Li-Cl bonds, facilitating favorable activation of Li. Our results show that this high-entropy halide electrolyte boosts the cycle stability of all-solid-state battery by 250% improvement over 500 cycles. In particular, the cell provides a higher discharge capacity of 185 mAh g by increasing the charge cut-off voltage to 4.6 V at a small current rate of 0.2 C, which is more challenging to electrolytes|cathode stability. These findings deepen our understanding of high-entropy materials, advancing their use in energy-related applications.
稳定的固体电解质对于高安全性和高能量密度的锂电池至关重要,特别是对于使用高压阴极的应用。在这种情况下,固体电解质在高电压充电过程中可能会经历严重的氧化、分解和失活,导致循环性能不足甚至电池失效。在此,我们通过引入局部晶格畸变来限制Cl的分布,从而解决卤化物固体电解质的高电压限制问题,这有效地抑制了它们的氧化动力学。这种限制是通过在LiInCl中用多种元素取代In来实现的,从而得到高熵LiYErYbInZrCl。同时,晶格畸变促进了更长的Li-Cl键,有利于Li的良好活化。我们的结果表明,这种高熵卤化物电解质使全固态电池的循环稳定性在500次循环中提高了250%。特别是,通过在0.2 C的小电流速率下将充电截止电压提高到4.6 V,该电池提供了185 mAh g的更高放电容量,这对电解质|阴极稳定性更具挑战性。这些发现加深了我们对高熵材料的理解,推动了它们在能源相关应用中的使用。