复杂网络中一次性转发信息的多信息传播模型

A Multi-Information Spreading Model for One-Time Retweet Information in Complex Networks.

作者信息

Zhao Kaidi, Han Dingding, Bao Yihong, Qian Jianghai, Yang Ruiqi

机构信息

School of Information Science and Technology, Fudan University, Shanghai 200433, China.

Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China.

出版信息

Entropy (Basel). 2024 Feb 9;26(2):152. doi: 10.3390/e26020152.

Abstract

In the realm of online social networks, the spreading of information is influenced by a complex interplay of factors. To explore the dynamics of one-time retweet information spreading, we propose a Susceptible-Infected-Completed (SIC) multi-information spreading model. This model captures how multiple pieces of information interact in online social networks by introducing inhibiting and enhancement factors. The SIC model considers the completed state, where nodes cease to spread a particular piece of information after transmitting it. It also takes into account the impact of past and present information received from neighboring nodes, dynamically calculating the probability of nodes spreading each piece of information at any given moment. To analyze the dynamics of multiple information pieces in various scenarios, such as mutual enhancement, partial competition, complete competition, and coexistence of competition and enhancement, we conduct experiments on BA scale-free networks and the Twitter network. Our findings reveal that competing information decreases the likelihood of its spread while cooperating information amplifies the spreading of mutually beneficial content. Furthermore, the strength of the enhancement factor between different information pieces determines their spread when competition and cooperation coexist. These insights offer a fresh perspective for understanding the patterns of information propagation in multiple contexts.

摘要

在在线社交网络领域,信息传播受到多种因素复杂相互作用的影响。为了探究一次性转发信息传播的动态过程,我们提出了一种易感-感染-完成(SIC)多信息传播模型。该模型通过引入抑制和增强因素,捕捉了多条信息在在线社交网络中的相互作用方式。SIC模型考虑了完成状态,即节点在传输特定信息后停止传播该信息。它还考虑了从相邻节点接收到的过去和当前信息的影响,动态计算节点在任何给定时刻传播每条信息的概率。为了分析多种场景下多条信息的动态过程,如相互增强、部分竞争、完全竞争以及竞争与增强并存的情况,我们在BA无标度网络和推特网络上进行了实验。我们发现,相互竞争的信息会降低其传播的可能性,而相互合作的信息会放大互利内容的传播。此外,当竞争与合作并存时,不同信息之间增强因素的强度决定了它们的传播情况。这些见解为理解多种情境下的信息传播模式提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/751b/10887643/abc4fef2927c/entropy-26-00152-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索