文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用机器学习模型(MLR、ANN、ANFIS和随机森林)对疟原虫进行定量预测

Quantitative Forecasting of Malaria Parasite Using Machine Learning Models: MLR, ANN, ANFIS and Random Forest.

作者信息

Uzun Ozsahin Dilber, Duwa Basil Barth, Ozsahin Ilker, Uzun Berna

机构信息

Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah, Sharjah 27272, United Arab Emirates.

Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.

出版信息

Diagnostics (Basel). 2024 Feb 9;14(4):385. doi: 10.3390/diagnostics14040385.


DOI:10.3390/diagnostics14040385
PMID:38396424
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10888406/
Abstract

Malaria continues to be a major barrier to socioeconomic development in Africa, where its death rate is over 90%. The predictive power of many machine learning models-such as multi-linear regression (MLR), artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFISs) and Random Forest classifier-is investigated in this study using data from 2207 patients. The dataset was reduced from the initial dataset of thirty-two criteria samples to fifteen. Assessment measures such as the root mean square error (RMSE), mean square error (MSE), coefficient of determination (), and adjusted correlation coefficient R were used. ANFIS, Random Forest, MLR, and ANN are among the models. After training, ANN outperforms ANFIS (97%), MLR (92%), and Random Forest (68%) with the greatest (99%) and (99%), respectively. The testing stage confirms the superiority of ANN. The paper also presents a statistical forecasting sheet with few errors and excellent accuracy for MLR models. When the models are assessed with Random Forest, the latter shows the least results, thus broadening the modeling techniques and offering significant insights into the prediction of malaria and healthcare decision making. The outcomes of using machine learning models for precise and efficient illness prediction add to an expanding body of knowledge, assisting healthcare systems in making better decisions and allocating resources more effectively.

摘要

疟疾仍然是非洲社会经济发展的主要障碍,非洲的疟疾死亡率超过90%。本研究使用来自2207名患者的数据,对许多机器学习模型的预测能力进行了研究,这些模型包括多元线性回归(MLR)、人工神经网络(ANN)、自适应神经模糊推理系统(ANFIS)和随机森林分类器。数据集从最初的32个标准样本减少到15个。使用了均方根误差(RMSE)、均方误差(MSE)、决定系数()和调整后的相关系数R等评估指标。ANFIS、随机森林、MLR和ANN都在这些模型之中。经过训练,ANN的表现优于ANFIS(97%)、MLR(92%)和随机森林(68%),其决定系数()和调整后的相关系数R分别最大,为99%和99%。测试阶段证实了ANN的优越性。本文还给出了一个统计预测表,该表针对MLR模型的误差较少且准确率很高。当用随机森林评估这些模型时,随机森林的结果最差,从而拓宽了建模技术,并为疟疾预测和医疗决策提供了重要见解。使用机器学习模型进行精确高效的疾病预测的结果增加了不断扩展的知识体系,有助于医疗系统做出更好的决策并更有效地分配资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/10888406/5cbf5c368f90/diagnostics-14-00385-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/10888406/d8231efc2f7f/diagnostics-14-00385-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/10888406/21afaf4f217f/diagnostics-14-00385-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/10888406/5cbf5c368f90/diagnostics-14-00385-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/10888406/d8231efc2f7f/diagnostics-14-00385-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/10888406/21afaf4f217f/diagnostics-14-00385-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda9/10888406/5cbf5c368f90/diagnostics-14-00385-g003.jpg

相似文献

[1]
Quantitative Forecasting of Malaria Parasite Using Machine Learning Models: MLR, ANN, ANFIS and Random Forest.

Diagnostics (Basel). 2024-2-9

[2]
Comparative study of artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) for modeling of Cu (II) adsorption from aqueous solution using biochar derived from rambutan (Nephelium lappaceum) peel.

Environ Monit Assess. 2020-6-17

[3]
Prediction of irrigation groundwater quality parameters using ANN, LSTM, and MLR models.

Environ Sci Pollut Res Int. 2022-3

[4]
Performance evaluation of artificial intelligence paradigms-artificial neural networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction.

Environ Sci Pollut Res Int. 2021-5

[5]
Predicting High-Strength Concrete's Compressive Strength: A Comparative Study of Artificial Neural Networks, Adaptive Neuro-Fuzzy Inference System, and Response Surface Methodology.

Materials (Basel). 2024-9-15

[6]
Multi-region machine learning-based novel ensemble approaches for predicting COVID-19 pandemic in Africa.

Environ Sci Pollut Res Int. 2023-1

[7]
Predicting coagulation-flocculation process for turbidity removal from water using graphene oxide: a comparative study on ANN, SVR, ANFIS, and RSM models.

Environ Sci Pollut Res Int. 2022-10

[8]
Adaptive neuro-fuzzy inference system (ANFIS) and multiple linear regression (MLR) modelling of Cu, Cd, and Pb adsorption onto tropical soils.

Environ Sci Pollut Res Int. 2023-3

[9]
Assessing the impacts of climate change on streamflow dynamics: A machine learning perspective.

Water Sci Technol. 2023-11

[10]
Accurate prediction of dynamic viscosity of polyalpha-olefin boron nitride nanofluids using machine learning.

Heliyon. 2023-5-26

引用本文的文献

[1]
Automated multi-model framework for malaria detection using deep learning and feature fusion.

Sci Rep. 2025-7-16

[2]
AI-Driven Data Analysis for Asthma Risk Prediction.

Healthcare (Basel). 2025-3-31

[3]
Deep learning-based malaria parasite detection: convolutional neural networks model for accurate species identification of Plasmodium falciparum and Plasmodium vivax.

Sci Rep. 2025-1-30

本文引用的文献

[1]
Prediction of Cell Migration in MDA-MB 231 and MCF-7 Human Breast Cancer Cells Treated with Methanolic Extract Using Multilinear Regression and Artificial Intelligence-Based Models.

Pharmaceuticals (Basel). 2023-6-8

[2]
COVID-19 Prediction Using Black-Box Based Pearson Correlation Approach.

Diagnostics (Basel). 2023-3-27

[3]
Predicting transmission risk across Peninsular Malaysia using machine learning-based ecological niche modeling approaches.

Front Microbiol. 2023-2-16

[4]
Mathematical Assessment of Machine Learning Models Used for Brain Tumor Diagnosis.

Diagnostics (Basel). 2023-2-8

[5]
An insight to better understanding cross border malaria in Saudi Arabia.

Malar J. 2023-2-2

[6]
Computer-Aided Detection and Classification of Monkeypox and Chickenpox Lesion in Human Subjects Using Deep Learning Framework.

Diagnostics (Basel). 2023-1-12

[7]
Clinical Modelling of RVHF Using Pre-Operative Variables: A Direct and Inverse Feature Extraction Technique.

Diagnostics (Basel). 2022-12-6

[8]
Evaluating the Performance of Deep Learning Frameworks for Malaria Parasite Detection Using Microscopic Images of Peripheral Blood Smears.

Diagnostics (Basel). 2022-11-5

[9]
Breast Cancer Screening Based on Supervised Learning and Multi-Criteria Decision-Making.

Diagnostics (Basel). 2022-5-27

[10]
Diagnosing Malaria Patients with and Using Deep Learning for Thick Smear Images.

Diagnostics (Basel). 2021-10-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索