Uzun Ozsahin Dilber, Duwa Basil Barth, Ozsahin Ilker, Uzun Berna
Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah, Sharjah 27272, United Arab Emirates.
Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
Diagnostics (Basel). 2024 Feb 9;14(4):385. doi: 10.3390/diagnostics14040385.
Malaria continues to be a major barrier to socioeconomic development in Africa, where its death rate is over 90%. The predictive power of many machine learning models-such as multi-linear regression (MLR), artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFISs) and Random Forest classifier-is investigated in this study using data from 2207 patients. The dataset was reduced from the initial dataset of thirty-two criteria samples to fifteen. Assessment measures such as the root mean square error (RMSE), mean square error (MSE), coefficient of determination (), and adjusted correlation coefficient R were used. ANFIS, Random Forest, MLR, and ANN are among the models. After training, ANN outperforms ANFIS (97%), MLR (92%), and Random Forest (68%) with the greatest (99%) and (99%), respectively. The testing stage confirms the superiority of ANN. The paper also presents a statistical forecasting sheet with few errors and excellent accuracy for MLR models. When the models are assessed with Random Forest, the latter shows the least results, thus broadening the modeling techniques and offering significant insights into the prediction of malaria and healthcare decision making. The outcomes of using machine learning models for precise and efficient illness prediction add to an expanding body of knowledge, assisting healthcare systems in making better decisions and allocating resources more effectively.
疟疾仍然是非洲社会经济发展的主要障碍,非洲的疟疾死亡率超过90%。本研究使用来自2207名患者的数据,对许多机器学习模型的预测能力进行了研究,这些模型包括多元线性回归(MLR)、人工神经网络(ANN)、自适应神经模糊推理系统(ANFIS)和随机森林分类器。数据集从最初的32个标准样本减少到15个。使用了均方根误差(RMSE)、均方误差(MSE)、决定系数()和调整后的相关系数R等评估指标。ANFIS、随机森林、MLR和ANN都在这些模型之中。经过训练,ANN的表现优于ANFIS(97%)、MLR(92%)和随机森林(68%),其决定系数()和调整后的相关系数R分别最大,为99%和99%。测试阶段证实了ANN的优越性。本文还给出了一个统计预测表,该表针对MLR模型的误差较少且准确率很高。当用随机森林评估这些模型时,随机森林的结果最差,从而拓宽了建模技术,并为疟疾预测和医疗决策提供了重要见解。使用机器学习模型进行精确高效的疾病预测的结果增加了不断扩展的知识体系,有助于医疗系统做出更好的决策并更有效地分配资源。
Diagnostics (Basel). 2024-2-9
Environ Sci Pollut Res Int. 2022-3
Environ Sci Pollut Res Int. 2023-1
Water Sci Technol. 2023-11
Healthcare (Basel). 2025-3-31
Diagnostics (Basel). 2023-3-27
Diagnostics (Basel). 2023-2-8
Diagnostics (Basel). 2022-12-6
Diagnostics (Basel). 2022-5-27
Diagnostics (Basel). 2021-10-27