Suppr超能文献

在正弦图域使用高度通用的深度学习进行少视图光学投影断层扫描重建。

Optical projection tomography reconstruction with few views using highly-generalizable deep learning at sinogram domain.

作者信息

Sun Jiahao, Zhao Fang, Zhu Lanxin, Liu BinBing, Fei Peng

机构信息

School of Optical and Electronic Information-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.

Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, China.

出版信息

Biomed Opt Express. 2023 Nov 13;14(12):6260-6270. doi: 10.1364/BOE.500152. eCollection 2023 Dec 1.

Abstract

Optical projection tomography (OPT) reconstruction using a minimal number of measured views offers the potential to significantly reduce excitation dosage and greatly enhance temporal resolution in biomedical imaging. However, traditional algorithms for tomographic reconstruction exhibit severe quality degradation, e.g., presence of streak artifacts, when the number of views is reduced. In this study, we introduce a novel domain evaluation method which can evaluate the domain complexity, and thereby validate that the sinogram domain exhibits lower complexity as compared to the conventional spatial domain. Then we achieve robust deep-learning-based reconstruction with a feedback-based data initialization method at sinogram domain, which shows strong generalization ability that notably improves the overall performance for OPT image reconstruction. This learning-based approach, termed SinNet, enables 4-view OPT reconstructions of diverse biological samples showing robust generalization ability. It surpasses the conventional OPT reconstruction approaches in terms of peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM) metrics, showing its potential for the augment of widely-used OPT techniques.

摘要

使用最少数量的测量视图进行光学投影断层扫描(OPT)重建,有望在生物医学成像中显著降低激发剂量并大大提高时间分辨率。然而,当视图数量减少时,传统的断层扫描重建算法会出现严重的质量下降,例如出现条纹伪影。在本研究中,我们引入了一种新颖的域评估方法,该方法可以评估域的复杂性,从而验证与传统空间域相比,正弦图域表现出更低的复杂性。然后,我们在正弦图域使用基于反馈的数据初始化方法实现了基于深度学习的稳健重建,该方法显示出强大的泛化能力,显著提高了OPT图像重建的整体性能。这种基于学习的方法称为SinNet,能够对各种生物样本进行4视图OPT重建,显示出强大的泛化能力。在峰值信噪比(PSNR)和结构相似性(SSIM)指标方面,它超越了传统的OPT重建方法,显示出其在扩展广泛使用的OPT技术方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c57/10898583/21e8c982aa4c/boe-14-12-6260-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验