Suppr超能文献

应用于斑马鱼体内成像的欠采样光学投影断层成像数据重建的卷积神经网络。

Convolutional neural networks for reconstruction of undersampled optical projection tomography data applied to in vivo imaging of zebrafish.

机构信息

Department of Physics, Imperial College London, London, UK.

The Francis Crick Institute, London, UK.

出版信息

J Biophotonics. 2019 Dec;12(12):e201900128. doi: 10.1002/jbio.201900128. Epub 2019 Aug 29.

Abstract

Optical projection tomography (OPT) is a 3D mesoscopic imaging modality that can utilize absorption or fluorescence contrast. 3D images can be rapidly reconstructed from tomographic data sets sampled with sufficient numbers of projection angles using the Radon transform, as is typically implemented with optically cleared samples of the mm-to-cm scale. For in vivo imaging, considerations of phototoxicity and the need to maintain animals under anesthesia typically preclude the acquisition of OPT data at a sufficient number of angles to avoid artifacts in the reconstructed images. For sparse samples, this can be addressed with iterative algorithms to reconstruct 3D images from undersampled OPT data, but the data processing times present a significant challenge for studies imaging multiple animals. We show here that convolutional neural networks (CNN) can be used in place of iterative algorithms to remove artifacts-reducing processing time for an undersampled in vivo zebrafish dataset from 77 to 15 minutes. We also show that using CNN produces reconstructions of equivalent quality to compressed sensing with 40% fewer projections. We further show that diverse training data classes, for example, ex vivo mouse tissue data, can be used for CNN-based reconstructions of OPT data of other species including live zebrafish.

摘要

光学投影断层成像术(OPT)是一种 3D 介观成像方式,可以利用吸收或荧光对比度。通过使用 Radon 变换,从具有足够投影角度的层析数据集快速重建 3D 图像,这通常是通过对毫米到厘米尺度的光学透明样本进行的。对于体内成像,光毒性的考虑因素以及需要使动物处于麻醉状态下,通常排除了以足够的角度采集 OPT 数据以避免重建图像中的伪影。对于稀疏样本,可以使用迭代算法从欠采样 OPT 数据中重建 3D 图像,但数据处理时间对成像多个动物的研究构成了重大挑战。我们在这里表明,卷积神经网络(CNN)可以替代迭代算法,将欠采样的体内斑马鱼数据集的处理时间从 77 分钟减少到 15 分钟。我们还表明,使用 CNN 可以以 40%的投影次数减少来生成与压缩感测相当的重建。我们进一步表明,不同的训练数据类别,例如,离体小鼠组织数据,可以用于基于 CNN 的其他物种的 OPT 数据的重建,包括活体斑马鱼。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验