Suppr超能文献

通过对接、分子动力学和片段分子轨道计算相结合,预测奈非那韦(一种重新定位的 SARS-CoV-2 主要蛋白酶药物)的结合构象和亲和力。

Prediction of Binding Pose and Affinity of Nelfinavir, a SARS-CoV-2 Main Protease Repositioned Drug, by Combining Docking, Molecular Dynamics, and Fragment Molecular Orbital Calculations.

机构信息

Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.

Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.

出版信息

J Phys Chem B. 2024 Mar 14;128(10):2249-2265. doi: 10.1021/acs.jpcb.3c05564. Epub 2024 Mar 4.

Abstract

A novel drug design procedure is described targeting the Main protease (Mpro) of the SARS-CoV-2 virus. The procedure combines molecular docking, molecular dynamics (MD), and fragment molecular orbital (FMO) calculations. The binding structure and properties of Mpro were predicted for Nelfinavir (NFV), which had been identified as a candidate compound through drug repositioning, targeting Mpro. Several poses of the Mpro and NFV complexes were generated by docking, from which four docking poses were selected by scoring with FMO energy. Then, each pose was subjected to MD simulation, 100 snapshot structures were sampled from each of the generated MD trajectories, and the structures were evaluated by FMO calculations to rank the pose based on binding energy. Several residues were found to be important in ligand recognition, including Glu47, Asp48, Glu166, Asp187, and Gln189, all of which interacted strongly with NFV. Asn142 is presumably regarded to form hydrogen bonds or CH/π interaction with NFV; however, in the present calculation, their interactions were transient. Moreover, the -butyl group of NFV had no interaction with Mpro. Identifying such strong and weak interactions provides candidates for maintaining and substituting ligand functional groups and important suggestions for drug discovery using drug repositioning. Besides the interaction between NFV and the amino acid residues of Mpro, the desolvation effect of the binding pocket also affected the ranking order. A similar procedure of drug design was applied to Lopinavir, and the calculated interaction energy and experimental inhibitory activity value trends were consistent. Our approach provides a new guideline for structure-based drug design starting from a candidate compound whose complex crystal structure has not been obtained.

摘要

描述了一种针对 SARS-CoV-2 病毒主蛋白酶(Mpro)的新型药物设计程序。该程序结合了分子对接、分子动力学(MD)和片段分子轨道(FMO)计算。通过药物重定位,针对 Mpro 预测了已被确定为候选化合物的奈非那韦(NFV)的结合结构和性质。通过对接生成了 Mpro 和 NFV 复合物的几个构象,并用 FMO 能量评分选择了四个对接构象。然后,对每个构象进行 MD 模拟,从每个生成的 MD 轨迹中采样 100 个快照结构,并通过 FMO 计算对结构进行评估,根据结合能对构象进行排序。发现几个残基在配体识别中很重要,包括 Glu47、Asp48、Glu166、Asp187 和 Gln189,它们都与 NFV 强烈相互作用。Asn142 可能被认为与 NFV 形成氢键或 CH/π 相互作用;然而,在本计算中,它们的相互作用是瞬时的。此外,NFV 的 -丁基与 Mpro 没有相互作用。确定这些强相互作用和弱相互作用为维持和取代配体官能团提供了候选,并为使用药物重定位进行药物发现提供了重要建议。除了 NFV 与 Mpro 氨基酸残基之间的相互作用外,结合口袋的去溶剂化效应也影响了排序顺序。类似的药物设计程序也应用于洛匹那韦,计算出的相互作用能和实验抑制活性值趋势一致。我们的方法为从尚未获得其复合物晶体结构的候选化合物开始的基于结构的药物设计提供了新的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f73/10946393/08f9904b6664/jp3c05564_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验