文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

深度学习将癌症的组织学、分子特征和预后联系起来。

Deep learning links histology, molecular signatures and prognosis in cancer.

机构信息

Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA.

Skirball Institute, NYU Grossman School of Medicine, New York, NY, USA.

出版信息

Nat Cancer. 2020 Aug;1(8):755-757. doi: 10.1038/s43018-020-0099-2.


DOI:10.1038/s43018-020-0099-2
PMID:35122048
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11330634/
Abstract

Deep learning can be used to predict genomic alterations based on morphological features learned from digital histopathology. Two independent pan-cancer studies now show that automated learning from digital pathology slides and genomics can potentially decipher broader classes of molecular signatures and prognostic associations across cancer types.

摘要

深度学习可以用于根据从数字组织病理学中学习到的形态特征来预测基因组改变。两项独立的泛癌症研究现在表明,从数字病理幻灯片和基因组学中进行自动化学习,有可能在癌症类型之间破译更广泛的分子特征和预后关联类别。

相似文献

[1]
Deep learning links histology, molecular signatures and prognosis in cancer.

Nat Cancer. 2020-8

[2]
Harnessing TME depicted by histological images to improve cancer prognosis through a deep learning system.

Cell Rep Med. 2024-5-21

[3]
Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy.

Theranostics. 2019-4-13

[4]
Deep learning in cancer diagnosis, prognosis and treatment selection.

Genome Med. 2021-9-27

[5]
Pan-cancer image-based detection of clinically actionable genetic alterations.

Nat Cancer. 2020-8

[6]
DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data.

Genome Med. 2021-7-14

[7]
Application of Deep Learning in Cancer Prognosis Prediction Model.

Technol Cancer Res Treat. 2023

[8]
Pan-cancer integrative histology-genomic analysis via multimodal deep learning.

Cancer Cell. 2022-8-8

[9]
The impact of site-specific digital histology signatures on deep learning model accuracy and bias.

Nat Commun. 2021-7-20

[10]
Deep Learning Models Differentiate Tumor Grades from H&E Stained Histology Sections.

Annu Int Conf IEEE Eng Med Biol Soc. 2018-7

引用本文的文献

[1]
Machine Learning Approach and Bioinformatics Analysis Discovered Key Genomic Signatures for Hepatitis B Virus-Associated Hepatocyte Remodeling and Hepatocellular Carcinoma.

Cancer Inform. 2025-4-16

[2]
Automated Detection of Kaposi Sarcoma-Associated Herpesvirus-Infected Cells in Immunohistochemical Images of Skin Biopsies.

JCO Glob Oncol. 2025-4

[3]
Self-supervised learning reveals clinically relevant histomorphological patterns for therapeutic strategies in colon cancer.

Nat Commun. 2025-3-8

[4]
Next-generation sequencing based deep learning model for prediction of HER2 status and response to HER2-targeted neoadjuvant chemotherapy.

J Cancer Res Clin Oncol. 2025-2-9

[5]
CT-based multimodal deep learning for non-invasive overall survival prediction in advanced hepatocellular carcinoma patients treated with immunotherapy.

Insights Imaging. 2024-8-26

[6]
Intelligent oncology: The convergence of artificial intelligence and oncology.

J Natl Cancer Cent. 2022-12-5

[7]
Deep learning framework for comprehensive molecular and prognostic stratifications of triple-negative breast cancer.

Fundam Res. 2022-6-29

[8]
Deceptive learning in histopathology.

Histopathology. 2024-7

[9]
Self-Supervised Learning Reveals Clinically Relevant Histomorphological Patterns for Therapeutic Strategies in Colon Cancer.

bioRxiv. 2024-3-21

[10]
Artificial Intelligence Reveals Distinct Prognostic Subgroups of Muscle-Invasive Bladder Cancer on Histology Images.

Cancers (Basel). 2023-10-16

本文引用的文献

[1]
Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis.

Nat Cancer. 2020-8

[2]
Pan-cancer image-based detection of clinically actionable genetic alterations.

Nat Cancer. 2020-8

[3]
Prediction of BAP1 Expression in Uveal Melanoma Using Densely-Connected Deep Classification Networks.

Cancers (Basel). 2019-10-16

[4]
Multi-Field-of-View Deep Learning Model Predicts Nonsmall Cell Lung Cancer Programmed Death-Ligand 1 Status from Whole-Slide Hematoxylin and Eosin Images.

J Pathol Inform. 2019-7-23

[5]
Clinical-grade computational pathology using weakly supervised deep learning on whole slide images.

Nat Med. 2019-7-15

[6]
Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer.

Nat Med. 2019-6-3

[7]
The current state of molecular testing in the treatment of patients with solid tumors, 2019.

CA Cancer J Clin. 2019-5-22

[8]
High-performance medicine: the convergence of human and artificial intelligence.

Nat Med. 2019-1-7

[9]
Artificial Intelligence and Digital Pathology: Challenges and Opportunities.

J Pathol Inform. 2018-11-14

[10]
Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning.

Nat Med. 2018-9-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索