Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA.
Skirball Institute, NYU Grossman School of Medicine, New York, NY, USA.
Nat Cancer. 2020 Aug;1(8):755-757. doi: 10.1038/s43018-020-0099-2.
Deep learning can be used to predict genomic alterations based on morphological features learned from digital histopathology. Two independent pan-cancer studies now show that automated learning from digital pathology slides and genomics can potentially decipher broader classes of molecular signatures and prognostic associations across cancer types.
深度学习可以用于根据从数字组织病理学中学习到的形态特征来预测基因组改变。两项独立的泛癌症研究现在表明,从数字病理幻灯片和基因组学中进行自动化学习,有可能在癌症类型之间破译更广泛的分子特征和预后关联类别。
Genome Med. 2021-9-27
Technol Cancer Res Treat. 2023
Cancer Cell. 2022-8-8
Annu Int Conf IEEE Eng Med Biol Soc. 2018-7
J Natl Cancer Cent. 2022-12-5
Histopathology. 2024-7
Cancers (Basel). 2019-10-16
CA Cancer J Clin. 2019-5-22
J Pathol Inform. 2018-11-14